全文获取类型
收费全文 | 78868篇 |
免费 | 6547篇 |
国内免费 | 4891篇 |
专业分类
90306篇 |
出版年
2024年 | 139篇 |
2023年 | 901篇 |
2022年 | 2079篇 |
2021年 | 3605篇 |
2020年 | 2327篇 |
2019年 | 2840篇 |
2018年 | 2873篇 |
2017年 | 2032篇 |
2016年 | 2873篇 |
2015年 | 4587篇 |
2014年 | 5297篇 |
2013年 | 5965篇 |
2012年 | 6897篇 |
2011年 | 6355篇 |
2010年 | 3818篇 |
2009年 | 3376篇 |
2008年 | 4113篇 |
2007年 | 3655篇 |
2006年 | 3172篇 |
2005年 | 2684篇 |
2004年 | 2279篇 |
2003年 | 1972篇 |
2002年 | 1730篇 |
2001年 | 1559篇 |
2000年 | 1565篇 |
1999年 | 1447篇 |
1998年 | 847篇 |
1997年 | 799篇 |
1996年 | 808篇 |
1995年 | 737篇 |
1994年 | 687篇 |
1993年 | 530篇 |
1992年 | 818篇 |
1991年 | 657篇 |
1990年 | 601篇 |
1989年 | 531篇 |
1988年 | 421篇 |
1987年 | 362篇 |
1986年 | 336篇 |
1985年 | 299篇 |
1984年 | 221篇 |
1983年 | 199篇 |
1982年 | 112篇 |
1981年 | 118篇 |
1980年 | 86篇 |
1979年 | 147篇 |
1978年 | 84篇 |
1977年 | 95篇 |
1975年 | 111篇 |
1974年 | 116篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Chen JX Zeng H Lawrence ML Blackwell TS Meyrick B 《American journal of physiology. Heart and circulatory physiology》2006,291(4):H1563-H1572
Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 microM) and apocynin (200 microM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47(phox) component of NADPH oxidase (p47(phox-/-)), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47(phox-/-) mice. Furthermore, exposure of aortic rings from p47(phox-/-) mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis. 相似文献
993.
994.
Bin Wang Linfeng Chen Zhenhong Ni Xufang Dai Liyan Qin Yaran Wu Xinzhe Li Liang Xu Jiqin Lian Fengtian He 《Experimental cell research》2014
Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1Thr163 phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells. 相似文献
995.
Ning Xu Yijie Dong Xinxin Cheng Qilin Yu Kefan Qian Jiwei Mao Chang Jia Xiaohui Ding Bing Zhang Yulu Chen Biao Zhang Laijun Xing Mingchun Li 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Iron bioavailability is crucial for mitochondrial metabolism and biosynthesis. Dysregulation of cellular iron homeostasis affects multiple aspects of mitochondrial physiology and cellular processes. However, the intracellular iron trafficking pathway in Candida albicans remains unclear. In this study, we characterized the Mrs4–Ccc1–Smf3 pathway, and demonstrated its important role in maintaining cellular iron levels. Double deletion of vacuolar iron exporter SMF3 and mitochondrial iron transporter MRS4 further elevated cellular iron levels in comparison with the single MRS4 deletion. However, deletion of vacuolar iron importer CCC1 in the mrs4?/? mutant restored cellular iron homeostasis to normal wild-type levels, and also normalized most of the defective phenotypes in response to various environmental stresses. Our results also suggested that both Mrs4 and Ccc1 contributed to the maintenance of mitochondrial function. The mrs4?/? and mrs4?/?smf3?/? mutants exhibited an obvious decrease in aconitase activities and mitochondrial membrane potential, whereas deletion of CCC1 in the mrs4?/? mutant effectively rescued these defects. Furthermore, we also found that the Mrs4–Ccc1–Smf3 pathway was indispensable for cell-wall stability, antifungal drug tolerance, filamentous growth and virulence, supporting the novel viewpoint that mitochondria might be the promising target for better antifungal therapies. Interestingly, the addition of exogenous iron failed to rescue the defects on non-fermentable carbon sources or hyphae-inducing medium, indicating that the defects in mitochondrial respiration and filamentous development might result from the disturbance of cellular iron homeostasis rather than environmental iron deprivation. Taken together, our results propose the Mrs4–Ccc1–Smf3 pathway as a potentially attractive target for antifungal drug development. 相似文献
996.
Toll-interleukin-1 receptor (TIR)-encoding proteins represent one of the most important families of disease resistance genes in plants. Studies that have explored the functional details of these genes tended to focus on only a few limited groups; the origin and evolutionary history of these genes were therefore unclear. In this study, focusing on the four principal groups of TIR-encoding genes, we conducted an extensive genome-wide survey of 32 fully sequenced plant genomes and Expressed Sequence Tags (ESTs) from the gymnosperm Pinus taeda and explored the origins and evolution of these genes. Through the identification of the TIR-encoding genes, the analysis of chromosome positions, the identification and analysis of conserved motifs, and sequence alignment and phylogenetic reconstruction, our results showed that the genes of the TIR-X family (TXs) had an earlier origin and a wider distribution than the genes from the other three groups. TIR-encoding genes experienced large-scale gene duplications during evolution. A skeleton motif pattern of the TIR domain was present in all spermatophytes, and the genes with this skeleton pattern exhibited a conserved and independent evolutionary history in all spermatophytes, including monocots, that followed their gymnosperm origin. This study used comparative genomics to explore the origin and evolutionary history of the four main groups of TIR-encoding genes. Additionally, we unraveled the mechanism behind the uneven distribution of TIR-encoding genes in dicots and monocots. 相似文献
997.
Lei Wang Mingjian Fang Yanping Hu Yuxin Yang Mingming Yang Yulin Chen 《Acta biochimica et biophysica Sinica》2014,(7):612-619
The count and diffusion of Lactobacilli species in the differ ent gastrointestinal tract (GI) regions of broilers were investigated by quantitative realtime polymerase chain reaction, and the probiotic characteristics of six L. reuteri species isolated from broilers' GI tract were also investi gated to obtain the potential target for genetic engineering. Lactobacilli had the highest diversity in the crop and the lowest one in the cecum. Compared with the lower GI tract, more LactobaciUi were found in the upper GI tract. Lactobacillus reuteri, johnsonii, L. acidophilus, L. crispatus, L. salivarius, and L. aviarius were the predominant Lactobacillus species and present throughout the GI tract of chickens. Lactobacillus reuteri was the most abundant Lactobacillus species. Lactobacillus reuteri XC1 had good probiotic characteristics that would be a potential and desirable target for genetic engineering. 相似文献
998.
Wei-Qin Zhao Pascale N. Lacor Hui Chen Mary P. Lambert Michael J. Quon Grant A. Krafft William L. Klein 《The Journal of biological chemistry》2009,284(28):18742-18753
Accumulation of amyloid β (Aβ) oligomers in the brain is toxic to synapses and may play an important role in memory loss in Alzheimer disease. However, how these toxins are built up in the brain is not understood. In this study we investigate whether impairments of insulin and insulin-like growth factor-1 (IGF-1) receptors play a role in aggregation of Aβ. Using primary neuronal culture and immortal cell line models, we show that expression of normal insulin or IGF-1 receptors confers cells with abilities to reduce exogenously applied Aβ oligomers (also known as ADDLs) to monomers. In contrast, transfection of malfunctioning human insulin receptor mutants, identified originally from patient with insulin resistance syndrome, or inhibition of insulin and IGF-1 receptors via pharmacological reagents increases ADDL levels by exacerbating their aggregation. In healthy cells, activation of insulin and IGF-1 receptor reduces the extracellular ADDLs applied to cells via seemingly the insulin-degrading enzyme activity. Although insulin triggers ADDL internalization, IGF-1 appears to keep ADDLs on the cell surface. Nevertheless, both insulin and IGF-1 reduce ADDL binding, protect synapses from ADDL synaptotoxic effects, and prevent the ADDL-induced surface insulin receptor loss. Our results suggest that dysfunctions of brain insulin and IGF-1 receptors contribute to Aβ aggregation and subsequent synaptic loss.Abnormal protein misfolding and aggregation are common features in neurodegenerative diseases such as Alzheimer (AD),2 Parkinson, Huntington, and prion diseases (1–3). In the AD brain, intracellular accumulation of hyperphosphorylated Tau aggregates and extracellular amyloid deposits comprise the two major pathological hallmarks of the disease (1, 4). Aβ aggregation has been shown to initiate from Aβ1–42, a peptide normally cleaved from the amyloid precursor protein (APP) via activities of α- and γ-secretases (5, 6). A large body of evidence in the past decade has indicated that accumulated soluble oligomers of Aβ1–42, likely the earliest or intermediate forms of Aβ deposition, are potently toxic to neurons. The toxic effects of Aβ oligomers include synaptic structural deterioration (7, 8) and functional deficits such as inhibition of synaptic transmission (9) and synaptic plasticity (10–13), as well as memory loss (11, 14, 15). Accumulation of high levels of these oligomers may also trigger inflammatory processes and oxidative stress in the brain probably due to activation of astrocytes and microglia (16, 17). Thus, to understand how a physiologically produced peptide becomes a misfolded toxin has been one of the key issues in uncovering the molecular pathogenesis of the disease.Aβ accumulation and aggregation could derive from overproduction or impaired clearance. Mutations of APP or presenilins 1 and 2, for example, are shown to cause overproduction of Aβ1–42 and amyloid deposits in the brain of early onset AD (18, 19). Because early onset AD accounts for less than 5% of entire AD population, APP and presenilin mutations cannot represent a universal mechanism for accumulation/aggregation of Aβ in the majority of AD cases. With respect to clearance, Aβ is normally removed by both global and local mechanisms, with the former requiring vascular transport across the blood-brain barrier (20, 21) and the latter via local enzymatic digestions by several metalloproteases, including neprilysin, insulin-degrading enzyme (IDE), and endothelin converting enzymes 1 and 2 (22–24).The fact that insulin is a common substrate for most of the identified Aβ-degrading enzymes has drawn attention of investigators to roles of insulin signaling in Aβ clearance. Increases in insulin levels frequently seen in insulin resistance may compete for these enzymes and thus contribute to Aβ accumulation. Indeed, insulin signaling has been shown to regulate expression of metalloproteases such as IDE (25, 26), and influence aspects of Aβ metabolism and catabolism (27). In the endothelium of the brain-blood barrier and glial cells, insulin signaling is reported to regulate protein-protein interactions in an uptake cascade involving low density lipoprotein receptor-related protein and its ligands ApoE and α2-macroglobulin, a system known to bind and clear Aβ via endocytosis and/or vascular transport (28, 29). Similarly, circulating IGF-1 has been reported to play a role in Aβ clearance probably via facilitating brain-blood barrier transportation (30, 31).In the brain, insulin signaling plays a role in learning and memory (32–34), potentially linking insulin resistance to AD dementia. Recently we and others have shown that Aβ oligomers interact with neuronal insulin receptors to cause impairments of the receptor expression and function (35–37). These impairments mimic the Aβ oligomer-induced synaptic long term potentiation inhibition and can be overcome by insulin treatment (35, 38). Consistently, impairments of both IR and IGF-1R have been reported in the AD brain (39–41).Based on these results, we ask whether impairment of insulin and IGF-1 signaling contribute to Aβ oligomer build-up in brain cells. To address this question, we set out to test roles of IR and IGF-1R in cellular clearance and transport of Aβ oligomers (ADDLs) applied to primary neuronal cultures and cell lines overexpressing IR and IGF-1R. Our results show that insulin and IGF-1 receptors function to reduce Aβ oligomers to monomers, and prevent Aβ oligomer-induced synaptic toxicity both at the level of synapse composition and structure. By contrast, receptor impairments resulting from “kinase-dead” insulin receptor mutations, a tyrosine kinase inhibitor of the insulin and IGF-1 receptor, or an inhibitory IGF-1 receptor antibody increase ADDL aggregation in the extracellular medium. Our results provide cellular evidence linking insulin and IGF-1 signaling to amyloidogenesis. 相似文献
999.
iTRAQ‐coupled 2‐D LC‐MS/MS analysis of protein profile associated with HBV‐modulated DNA methylation
The development of hepatocellular carcinoma (HCC) is believed to be associated with multiple risk factors, including the infection of hepatitis B virus (HBV). Based on the analysis of individual genes, evidence has indicated the association between HCC and HBV and has also been expanded to epigenetic regulation, with an involvement of HBV in the DNA methylation of the promoter of cellular target genes leading to changes in their expression. Proteomic study has been widely used to map a comprehensive protein profile, which in turn could provide a better understanding of underlying mechanisms of disease onset. In the present study, we performed a proteomic profiling by using iTRAQ‐coupled 2‐D LC/MS‐MS analysis to identify cellular genes down‐regulated in HBV‐producing HepG2.2.15 cells compared with HepG2 cells. A total of 15 proteins including S100A6 and Annexin A2 were identified by our approach. The significance of these cellular proteins as target of HBV‐mediated epigenetic regulation was supported by our validation assays, including their reactivation in cells treated with 5‐aza‐2′‐deoxycytidine (a DNA methyltransferase inhibitor) by real‐time RT‐PCR and Western blot analysis, as well as the DNA methylation status analysis by bisulfite genome sequencing. Our approach provides a comprehensive analysis of cellular target proteins to HBV‐mediated epigenetic regulation and further analysis should facilitate a better understanding of its involvement in HCC development. 相似文献
1000.
Guodong Zhang Jian An Chen Takuji Tanaka 《Biochimica et Biophysica Acta - Proteins and Proteomics》2009,1794(6):968-975
The allosteric behaviour of Lactococcus lactis prolidase (Xaa-Pro dipeptidase) of this proline-specific peptidase was investigated where it was hypothesized that intersubunit interactions between a loop structure and three residues near the active site contributed to this behaviour. Seven mutant prolidases were constructed, and it was observed that the loopless mutant and His303 substitution inactivated the enzyme. Ser307 substitution revealed that this residue influenced the substrate binding, as judged from its kinetic constants and substrate specificity; however, this residue did not contribute to allostery of prolidase. R293S mutation resulted in the disappearance of the allosteric behaviour yielding a Hill constant of 0.98 while the wild type had a constant of 1.58. In addition, the R293S mutation suppressed the substrate inhibition that was observed in other mutants and wild type. The Km value of R293S was 2.9-fold larger and Vmax was approximately 50% less as compared to the wild type. The results indicated that Arg293 increased the affinity for substrates while introducing allosteric behaviour and substrate inhibition. Computer modelling suggested that negative charges on the loop structure interacted with Arg293 and Ser307 to maintain these characteristics. It was, therefore, concluded that Arg293, His303, Ser307 and the loop contributed to the enzyme's allosteric characteristics. 相似文献