首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15017篇
  免费   1146篇
  国内免费   1132篇
  17295篇
  2024年   32篇
  2023年   181篇
  2022年   459篇
  2021年   831篇
  2020年   488篇
  2019年   598篇
  2018年   627篇
  2017年   523篇
  2016年   622篇
  2015年   892篇
  2014年   1074篇
  2013年   1204篇
  2012年   1400篇
  2011年   1251篇
  2010年   775篇
  2009年   684篇
  2008年   751篇
  2007年   625篇
  2006年   606篇
  2005年   486篇
  2004年   430篇
  2003年   331篇
  2002年   344篇
  2001年   312篇
  2000年   254篇
  1999年   249篇
  1998年   165篇
  1997年   131篇
  1996年   133篇
  1995年   125篇
  1994年   139篇
  1993年   92篇
  1992年   96篇
  1991年   70篇
  1990年   66篇
  1989年   58篇
  1988年   56篇
  1987年   31篇
  1986年   33篇
  1985年   19篇
  1984年   23篇
  1983年   12篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Layered transition metal sulfides (LTMSs) have tremendous commercial potential in anode materials for sodium‐ion batteries (SIBs) in large‐scale energy storage application. However, it is a great challenge for most LTMS electrodes to have long cycling life and high‐rate capability due to their larger volume expansion and the formation of soluble polysulfide intermediates caused by the conversion reaction. Herein, layered CuS microspheres with tunable interlayer space and pore volumes are reported through a cost‐effective interaction method using a cationic surfactant of cetyltrimethyl ammonium bromide (CTAB). The CuS–CTAB microsphere as an anode for SIBs reveals a high reversible capacity of 684.6 mAh g?1 at 0.1 A g?1, and 312.5 mAh g?1 at 10 A g?1 after 1000 cycles with high capacity retention of 90.6%. The excellent electrochemical performance is attributed to the unique structure of this material, and a high pseudocapacitive contribution ensures its high‐rate performance. Moreover, in situ X‐ray diffraction is applied to investigate their sodium storage mechanism. It is found that the long chain CTAB in the CuS provides buffer space, traps polysulfides, and restrains the further growth of Cu particles during the conversion reaction process that ensure the long cycling stability and high reversibility of the electrode material.  相似文献   
82.
Ethyl glucuronide (EtG) has been shown to be a suitable marker of excessive alcohol consumption. Determination of EtG in hair samples may help to differentiate social drinkers from alcoholics, and this testing can be widely used in forensic science, treatment programs, workplaces, military bases as well as driving ability test to provide legal proof of drinking. A method for determination of EtG in hair samples using large volume injection-gas chromatography-tandem mass spectrometry (LVI-GC/MS/MS) was developed and validated. Hair samples (in 1 mL deionized water) were ultrasonicated for 1h and incubated overnight; these samples were then deproteinated to remove impurities and derivatisated with 15 μL of pyridine and 30 μL of BSTFA. EtG was detected using GC/MS/MS in multiple-reaction monitoring mode. This method exhibited good linearity: y=0.0036 x+0.0437, R2=0.9993, the limit of detection and the limit of quantification were 5 pg/mg and 10 pg/mg, respectively. The extraction recoveries were more than 60%, and the inter-day and intra-day relative standard deviations (RSD) were less than 15%. This method has been applied to the analysis of EtG in hair samples from 21 Chinese subjects. The results for samples obtained from all of those who were teetotallers were negative, and the results for the other 15 samples ranged from 10 to 78 pg/mg, except for one negative sample. These data are the basis for interpretation of alcohol abuse.  相似文献   
83.
84.
Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated exp...  相似文献   
85.
86.
87.
88.
Alpha helix transmembrane proteins (αTMPs) represent roughly 30% of all open reading frames (ORFs) in a typical genome and are involved in many critical biological processes. Due to the special physicochemical properties, it is hard to crystallize and obtain high resolution structures experimentally, thus, sequence-based topology prediction is highly desirable for the study of transmembrane proteins (TMPs), both in structure prediction and function prediction. Various model-based topology prediction methods have been developed, but the accuracy of those individual predictors remain poor due to the limitation of the methods or the features they used. Thus, the consensus topology prediction method becomes practical for high accuracy applications by combining the advances of the individual predictors. Here, based on the observation that inter-helical interactions are commonly found within the transmembrane helixes (TMHs) and strongly indicate the existence of them, we present a novel consensus topology prediction method for αTMPs, CNTOP, which incorporates four top leading individual topology predictors, and further improves the prediction accuracy by using the predicted inter-helical interactions. The method achieved 87% prediction accuracy based on a benchmark dataset and 78% accuracy based on a non-redundant dataset which is composed of polytopic αTMPs. Our method derives the highest topology accuracy than any other individual predictors and consensus predictors, at the same time, the TMHs are more accurately predicted in their length and locations, where both the false positives (FPs) and the false negatives (FNs) decreased dramatically. The CNTOP is available at: http://ccst.jlu.edu.cn/JCSB/cntop/CNTOP.html.  相似文献   
89.
Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.  相似文献   
90.
The human squamous cell carcinoma antigens (SCCA) 1 and 2 are members of the serpin family that are 92% identical in their amino acid sequence. Despite this similarity, they inhibit distinct classes of proteinases. SCCA1 neutralizes the papain-like cysteine proteinases, cathepsins (cat) S, L, and K; and SCCA2 inhibits the chymotrypsin-like serine proteinases, catG and human mast cell chymase. SCCA2 also can inhibit catS, as well as other papain-like cysteine proteinases, albeit at a rate 50-fold less than that of SCCA1. Analysis of the mechanism of inhibition by SCCA1 revealed that the reactive site loop (RSL) is important for cysteine proteinase inhibition. The inhibition of catS by a mutant SCCA2 containing the RSL of SCCA1 is comparable to that of wild-type SCCA1. This finding suggested that there were no motifs outside and only eight residues within the RSL that were directing catS-specific inhibition. The purpose of this study was to determine which of these residues might account for the marked difference in the ability of SCCA1 and SCCA2 to inhibit papain-like cysteine proteinases. SCCA2 molecules containing different RSL mutations showed that no single amino acid substitution could convert SCCA2 into a more potent cysteine proteinase inhibitor. Rather, different combinations of mutations led to incremental increases in catS inhibitory activity with residues in four positions (P1, P3', P4', and P11') accounting for 80% of the difference in activity between SCCA1 and SCCA2. Interestingly, the RSL cleavage site differed between wild-type SCCA2 and this mutant. Moreover, these data established the importance of a Pro residue in the P3' position for efficient inhibition of catS by both wild-type SCCA1 and mutated SCCA2. Molecular modeling studies suggested that this residue might facilitate positioning of the RSL within the active site of the cysteine proteinase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号