首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   26篇
  2023年   6篇
  2022年   13篇
  2021年   22篇
  2020年   6篇
  2019年   11篇
  2018年   8篇
  2017年   4篇
  2016年   12篇
  2015年   15篇
  2014年   12篇
  2013年   13篇
  2012年   18篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1944年   1篇
  1901年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
121.
The Human Genome Project has opened the door to personalized medicine, provided that human genetic diversity can be analyzed in a high-throughput and cost-effective way Illumina has developed a genotyping system that combines very high throughput and accuracy with low cost per SNP analysis. The system uses our BeadArray platform, a high level of multiplexing, and modular, scalable automation to meet the requirements for cost-effective, genome-wide linkage disequilibrium studies. As implemented in a high-throughput genotyping service facility at Illumina, the system has a current capacity of one million SNP assays per day and is easily expandable. Each SNP call is associated with a quality score that correlates with accuracy  相似文献   
122.
We have developed a highly informative set of single-nucleotide polymorphism (SNP) assays designed for linkage mapping of the human genome. These assays were developed on a robust multiplexed assay system to provide a combination of very high accuracy and data completeness with high throughput for linkage studies. The linkage panel is comprised of approximately 4,700 SNPs with 0.39 average minor allele frequency and 624-kb average spacing. Based on almost 2 million genotypes, data quality was shown to be extremely high, with a 99.94% call rate, >99.99% reproducibility and 99.995% genotypes consistent with mendelian inheritance. We constructed a genetic map with an average 1.5-cM resolution using series of 28 CEPH pedigrees. The relative information content of this panel was higher than those of commonly used STR marker panels. The potent combination of this SNP linkage panel with the multiplexed assay system provides a previously unattainable level of performance for linkage studies.  相似文献   
123.
Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.  相似文献   
124.

Background

With the explosion of genomic data over the last decade, there has been a tremendous amount of effort to understand the molecular basis of cancer using informatics approaches. However, this has proven to be extremely difficult primarily because of the varied etiology and vast genetic heterogeneity of different cancers and even within the same cancer. One particularly challenging problem is to predict prognostic outcome of the disease for different patients.

Results

Here, we present ENCAPP, an elastic-net-based approach that combines the reference human protein interactome network with gene expression data to accurately predict prognosis for different human cancers. Our method identifies functional modules that are differentially expressed between patients with good and bad prognosis and uses these to fit a regression model that can be used to predict prognosis for breast, colon, rectal, and ovarian cancers. Using this model, ENCAPP can also identify prognostic biomarkers with a high degree of confidence, which can be used to generate downstream mechanistic and therapeutic insights.

Conclusion

ENCAPP is a robust method that can accurately predict prognostic outcome and identify biomarkers for different human cancers.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1465-9) contains supplementary material, which is available to authorized users.  相似文献   
125.
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl?d, Chl?f or bacteriochlorophyll (BChl) b to replace native BChl?a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg?10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6?ps, energy transfer from Chl?a to B850 BChl?a remained highly efficient. We measured faster energy-transfer time constants for Chl?d (3.5?ps) and Chl?f (2.7?ps), which have red-shifted absorption maxima compared to Chl?a. BChl?b, red-shifted from the native BChl?a, gave extremely rapid (≤0.1?ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.  相似文献   
126.

In bacterial reaction centers (RCs), photon-induced initial charge separation uses an A-side bacteriochlorophyll (BChl, BA) and bacteriopheophytin (BPh, HA), while the near-mirror image B-side BB and HB cofactors are inactive. Two new sets of Rhodobacter capsulatus RC mutants were designed, both bearing substitution of all amino acids for the native histidine M180 (M-polypeptide residue 180) ligand to the core Mg ion of BB. Residues are identified that largely result in retention of a BChl in the BB site (Asp, Ser, Pro, Gln, Asn, Gly, Cys, Lys, and Thr), ones that largely harbor the Mg-free BPh in the BB site (Leu and Ile), and ones for which isolated RCs are comprised of a substantial mixture of these two RC types (Ala, Glu, Val, Met and, in one set, Arg). No protein was isolated when M180 is Trp, Tyr, Phe, or (in one set) Arg. These findings are corroborated by ground state spectra, pigment extractions, ultrafast transient absorption studies, and the yields of B-side transmembrane charge separation. The changes in coordination chemistries did not reveal an RC with sufficiently precise poising of the redox properties of the BB-site cofactor to result in a high yield of B-side electron transfer to HB. Insights are gleaned into the amino acid properties that support BChl in the BB site and into the widely observed multi-exponential decay of the excited state of the primary electron donor. The results also have direct implications for tuning free energies of the charge-separated intermediates in RCs and mimetic systems.

  相似文献   
127.
128.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.  相似文献   
129.
Deposition of human amyloids is associated with complex human diseases such as Alzheimer’s and Parkinson’s. Amyloid proteins are also produced by bacteria. The bacterial amyloid curli, found in the extracellular matrix of both commensal and pathogenic enteric bacterial biofilms, forms complexes with extracellular DNA, and recognition of these complexes by the host immune system may initiate an autoimmune response. Here, we isolated early intermediate, intermediate, and mature curli fibrils that form throughout the biofilm development and investigated the structural and pathogenic properties of each. Early intermediate aggregates were smaller than intermediate and mature curli fibrils, and circular dichroism, tryptophan, and thioflavin T analyses confirmed the establishment of a beta-sheet secondary structure as the curli conformations matured. Intermediate and mature curli fibrils were more immune stimulatory than early intermediate fibrils in vitro. The intermediate curli was cytotoxic to macrophages independent of Toll-like receptor 2. Mature curli fibrils had the highest DNA content and induced the highest levels of Isg15 expression and TNFα production in macrophages. In mice, mature curli fibrils induced the highest levels of anti-double-stranded DNA autoantibodies. The levels of autoantibodies were higher in autoimmune-prone NZBWxF/1 mice than wild-type C57BL/6 mice. Chronic exposure to all curli forms led to significant histopathological changes and synovial proliferation in the joints of autoimmune-prone mice; mature curli was the most detrimental. In conclusion, curli fibrils, generated during biofilm formation, cause pathogenic autoimmune responses that are stronger when curli complexes contain higher levels of DNA and in mice predisposed to autoimmunity.  相似文献   
130.
Shigella species are the aetiological agents of shigellosis, a severe diarrhoeal disease that is a significant cause of morbidity and mortality worldwide. Shigellosis causes massive colonic destruction, high fever and bloody diarrhoea. Shigella pathogenesis is tightly linked to the ability of the bacterium to invade and replicate intracellularly within the colonic epithelium. Shigella uses a type 3 secretion system to deliver its effector proteins into the cytosol of infected cells. Among the repertoire of Shigella effectors, many are known to target components of the actin cytoskeleton to promote bacterial entry. An emerging alternate theme for effector function is the targeting of the host ubiquitin system. Ubiquitination is a post‐translational modification restricted to eukaryotes and is involved in many essential host processes. By virtue of sheer number of ubiquitin‐modulating effector proteins, it is clear that Shigella has invested heavily into subversion of the ubiquitin system. Understanding these host–pathogen interactions will inform us about the strategies used by successful pathogens and may also provide avenues for novel antimicrobial strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号