首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   963篇
  免费   68篇
  国内免费   68篇
  2024年   2篇
  2023年   12篇
  2022年   37篇
  2021年   62篇
  2020年   46篇
  2019年   49篇
  2018年   44篇
  2017年   32篇
  2016年   61篇
  2015年   52篇
  2014年   76篇
  2013年   84篇
  2012年   88篇
  2011年   74篇
  2010年   55篇
  2009年   56篇
  2008年   59篇
  2007年   37篇
  2006年   37篇
  2005年   19篇
  2004年   22篇
  2003年   18篇
  2002年   3篇
  2001年   14篇
  2000年   5篇
  1999年   15篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有1099条查询结果,搜索用时 656 毫秒
991.

Aims

Accurate computed tomography (CT)-based reconstruction of coronary morphometry (diameters, length, bifurcation angles) is important for construction of patient-specific models to aid diagnosis and therapy. The objective of this study is to validate the accuracy of patient coronary artery lumen area obtained from CT images based on intravascular ultrasound (IVUS).

Methods and Results

Morphometric data of 5 patient CT scans with 11 arteries from IVUS were reconstructed including the lumen cross sectional area (CSA), diameter and length. The volumetric data from CT images were analyzed at sub-pixel accuracy to obtain accurate vessel center lines and CSA. A new center line extraction approach was used where an initial estimated skeleton in discrete value was obtained using a traditional thinning algorithm. The CSA was determined directly without any circular shape assumptions to provide accurate reconstruction of stenosis. The root-mean-square error (RMSE) for CSA and diameter were 16.2% and 9.5% respectively.

Conclusions

The image segmentation and CSA extraction algorithm for reconstruction of coronary arteries proved to be accurate for determination of vessel lumen area. This approach provides fundamental morphometric data for patient-specific models to diagnose and treat coronary artery disease.  相似文献   
992.
993.
【目的】为了阐明乳酸乳球菌乳酸亚种KLDS4.0325的生理及代谢机制,并对其重要功能基因进行挖掘,我们对菌株KLDS4.0325的全基因组序列进行测定和基因组图谱的绘制,并利用生物软件和数据库完成对序列的注释及相关功能性分析。【方法】在菌株序列完成测序、组装和注释后,根据序列信息进行全基因组图谱的绘制,并对菌株的蛋白质水解系统、氨基酸来源的风味形成途径和B-族维生素合成途径进行了比较基因组分析,并对细菌素合成基因组和冷应激蛋白基因进行了预测。【结果】菌株KLDS4.0325基因组全长2589250 bp,G+C含量为35.4%,共预测出2662个开放阅读框,其中1310个具有潜在的生物学功能。菌株可以有效的对细胞外蛋白质进行有效的水解,具有潜在的降低苦味肽以及产生一系列能够抑制血管紧张素转化酶活性的活性肽。在转氨途径方面,菌株KLDS4.0325具有较为完成的酶系统,可以催化相关氨基酸转化为风味物质。在菌株KLDS4.0325的基因组中,我们发现了较多编码糖转运、代谢以及L-乳酸合成的基因。关于叶酸和核黄素合成途径的编码基因在菌株KLDS4.0325的基因组中也较为完整。此外,我们在菌株KLDS4.0325的基因组中预测出了一个关于乳球菌素的基因簇和两个冷应激蛋白Csp D和csp E的编码基因。【结论】这些编码菌株显著特性基因的存在为菌株KLDS4.0325能够进行工业发酵提供了理论基础,并为其进一步研究提供了方向。  相似文献   
994.
Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1α (HP1α) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1α. This borealin-HP1α interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1α interaction, demonstrating the spatial requirement of HP1α in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1α and CPC localization in the centromere and illustrate the critical role of borealin-HP1α interaction in orchestrating an accurate cell division.  相似文献   
995.
There is increasing evidence that vascular endothelial growth factor (VEGF) contributes to inflammation independent of its angiogenic functions. Targeting some of the components in endothelial Weibel-Palade bodies (WPBs) effectively inhibits VEGF-induced inflammation, but little is known about how VEGF regulates WPB exocytosis. In this study, we showed that VEGF receptor-2 (VEGFR2), but not VEGFR1, is responsible for VEGF-induced release of von Willebrand factor (vWF), a major marker of WPBs. This is in good contrast to VEGF-stimulated interleukin-6 release from endothelium, which is selectively mediated through VEGFR1. We further demonstrated that VEGFR2-initiated phospholipase C-γ1 (PLCγ1)/calcium signaling is important but insufficient for full vWF release, suggesting the possible participation of another effector pathway. We found that cAMP/protein kinase A (PKA) signaling is required for full vWF release. Importantly, a single mutation of Tyr1175 in the C terminus of VEGFR2, a tyrosine residue crucial for embryonic vasculogenesis, abolished vWF release, concomitant with defective activations of both PLCγ1 and PKA. These data suggest that Tyr1175 mediates both PLCγ1-dependent and PKA-dependent signaling pathways. Taken together, our results not only reveal a novel Tyr1175-mediated signaling pathway but also highlight a potentially new therapeutic target for the management of vascular inflammation.Vascular endothelial growth factor (VEGF)2 is a crucial regulator of vasculogenesis, angiogenesis, and vascular permeability (15). A number of studies have suggested that VEGF promotes proliferation, migration, and survival of endothelial cells (1, 4). VEGF (also termed VEGF-A) is a member of the growth factor subfamily that includes VEGF-B, -C, -D, and -E and placental growth factor (PlGF). VEGF binds to two high affinity tyrosine kinase receptors, VEGFR1 (also known as Flt-1) and VEGFR2 (also known as KDR/Flk-1), whereas VEGF-E binds to VEGFR2 alone, and PlGF binds to VEGFR1 alone. Within the vessel wall, VEGFR2 is selectively expressed in endothelium. In contrast, VEGFR1 is present on both endothelial cells and monocytes (1, 2).In addition to its role in promoting angiogenesis, there is increasing evidence that VEGF contributes to inflammation independent of its angiogenic functions, although the molecular basis for this effect is incompletely understood (68). VEGF is well expressed in the chronic inflammatory skin disease, psoriasis, and in synovial fluid in rheumatoid arthritis (912). In addition, previous studies found an association between human severe sepsis/septic shock with elevated circulating levels of VEGF and PlGF (13, 14). Using an in vitro monocyte migration assay and in vivo mouse models of arthritis, several groups, including ours, have suggested that one mechanism by which VEGF causes inflammation is by modulating the infiltration and secretion of monocytes/macrophages via the activation of VEGFR1 (11, 12, 15). On the other hand, emerging evidence suggests that endothelial activation is also important for VEGF-induced inflammation (6, 8, 9). In a mouse model of sepsis, it was demonstrated that the inhibition of VEGFR2, but not VEGFR1, attenuates sepsis mortality, possibly at least in part by suppressing vascular inflammation associated with endothelial activation (9). Consistent with this, ectopic VEGF-A expression in mice enhances leukocyte rolling and adhesion in venules mediated through the P-selectin on the surface of endothelial cells (6). These studies indicate that endothelial activation is another mechanism for VEGF-induced inflammation.P-selectin and von Willebrand factor (vWF) are the best characterized constituents of Weibel-Palade bodies (WPBs), endothelial storage granules that also contain various inflammatory mediators (1618). As a major component in WPBs, vWF is also involved in their biogenesis and thus is used as a marker of WPBs (18, 19). WPB exocytosis, which gives rise to rapid release of vWF and other mediators such as interleukin-8 (IL-8) (17), and translocation of P-selectin from within granules to the endothelial surfaces triggering leukocyte rolling, are critical early events in endothelial activation and vascular inflammation (16). It has been reported that VEGF regulates vWF/WPB release (20), but the precise roles of VEGF receptors and their downstream effectors in this process have not been defined. In this study, we sought to dissect the signaling pathway by which VEGF induces vWF/WPB release.  相似文献   
996.
997.
Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression.  相似文献   
998.
Sigma54-RNA polymerase (Esigma54) predominantly contacts one face of the DNA helix in the closed promoter complex, and interacts with the upstream enhancer-bound activator via DNA looping. Up to date, the precise face of Esigma54 that contacts the activator to convert the closed complex to an open one remains unclear. By introducing protein-induced DNA bends at precise locations between upstream enhancer sequences and the core promoter of the sigma54-dependent glnAp2 promoter without changing the distance in-between, we observed a strong enhanced or decreased promoter activity, especially on linear DNA templates in vitro. The relative positioning and orientations of Esigma54, DNA bending protein and enhancer-bound activator on linear DNA were determined by in vitro footprinting analysis. Intriguingly, the locations from which the DNA bending protein exerted its optimal stimulatory effects were all found on the opposite face of the DNA helix compared with the DNA bound Esigma54 in the closed complex. Therefore, these results provide evidence that the activator must approach the Esigma54 closed complexes from the unbound face of the promoter DNA helix to catalyse open complex formation. This proposal is further supported by the modelling of activator-promoter DNA-Esigma54 complex.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号