首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   8篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   7篇
  2017年   2篇
  2016年   13篇
  2015年   14篇
  2014年   16篇
  2013年   14篇
  2012年   27篇
  2011年   19篇
  2010年   14篇
  2009年   16篇
  2008年   15篇
  2007年   8篇
  2006年   9篇
  2005年   13篇
  2004年   6篇
  2003年   3篇
  2002年   13篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   5篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1965年   1篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
51.
Siddique YH  Ara G  Beg T  Afzal M 《Life sciences》2006,80(3):212-218
Medroxyprogesterone acetate was studied at three different concentrations (1, 5 and 10 microM), for its genotoxic effects in human peripheral blood lymphocyte culture using chromosomal aberrations and sister chromatid exchanges as parameters. Duplicate peripheral blood cultures were treated with three different concentrations (1, 5 and 10 microM) of medroxyprogesterone acetate. The study was carried out both in the absence as well as in the presence of metabolic activation (S9 mix) with and without NADP. Medroxyprogesterone acetate was found genotoxic at 5 and 10 microM in the presence of S9 mix with NADP. To study the possible mechanism of the genotoxicity of medroxyprogesterone acetate, superoxide dismutase and catalase at different doses were used separately and in combination with 10 microM of medroxyprogesterone at different doses in the presence of S9 mix with NADP. Superoxide dismutase treatment results in an increase of the genotoxic damage but catalase treatment reduce the genotoxic damage of medroxyprogesterone acetate. Catalase treatment in combination with superoxide dismutase also results in the further reduction of the genotoxic damage. The results of the present study reveal that medroxyprogesterone acetate is genotoxic only in the presence of metabolic activation (S9 mix) with NADP. Treatments with superoxide dismutase and catalase suggests the possible generation of reactive oxygen species by redox cycling of various forms of quinones, similar to estrogens, that are the results of aromatic hydroxylation by cytochrome P450s.  相似文献   
52.
We investigated three families whose offspring had extreme microcephaly at birth and profound mental retardation. Brain scans and postmortem data showed that affected individuals had brains less than 10% of expected size (≤10 standard deviation) and that in addition to a massive reduction in neuron production they displayed partially deficient cortical lamination (microlissencephaly). Other body systems were apparently unaffected and overall growth was normal. We found two distinct homozygous mutations of NDE1, c.83+1G>T (p.Ala29GlnfsX114) in a Turkish family and c.684_685del (p.Pro229TrpfsX85) in two families of Pakistani origin. Using patient cells, we found that c.83+1G>T led to the use of a novel splice site and to a frameshift after NDE1 exon 2. Transfection of tagged NDE1 constructs showed that the c.684_685del mutation resulted in a NDE1 that was unable to localize to the centrosome. By staining a patient-derived cell line that carried the c.83+1G>T mutation, we found that this endogeneously expressed mutated protein equally failed to localize to the centrosome. By examining human and mouse embryonic brains, we determined that NDE1 is highly expressed in neuroepithelial cells of the developing cerebral cortex, particularly at the centrosome. We show that NDE1 accumulates on the mitotic spindle of apical neural precursors in early neurogenesis. Thus, NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. Our data further highlight the importance of the centrosome in multiple aspects of neurodevelopment.  相似文献   
53.
Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.  相似文献   
54.
Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridization. The codA-transgenic plants showed higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings than wild-type plants. The codA transgene enhanced the salt tolerance of whole plants and leaves. Mature leaves of codA-transgenic plants revealed higher levels of relative water content, chlorophyll content, and proline content than those of wild-type plants under salt and water stresses. Results from the current study suggest that the expression of the codA gene in transgenic tomato plants induces the synthesis of glycinebetaine and improves the tolerance of plants to salt and water stresses.  相似文献   
55.
Determining the 3D pose of the patella after total knee arthroplasty is challenging. The commonly used single-plane fluoroscopy is prone to large errors in the clinically relevant mediolateral direction. A conventional fixed bi-planar setup is limited in the minimum angular distance between the imaging planes necessary for visualizing the patellar component, and requires a highly flexible setup to adjust for the subject-specific geometries. As an alternative solution, this study investigated the use of a novel multi-planar imaging setup that consists of a C-arm tracked by an external optoelectric tracking system, to acquire calibrated radiographs from multiple orientations. To determine the accuracies, a knee prosthesis was implanted on artificial bones and imaged in simulated 'Supine' and 'Weightbearing' configurations. The results were compared with measures from a coordinate measuring machine as the ground-truth reference. The weightbearing configuration was the preferred imaging direction with RMS errors of 0.48 mm and 1.32 ° for mediolateral shift and tilt of the patella, respectively, the two most clinically relevant measures. The 'imaging accuracies' of the system, defined as the accuracies in 3D reconstruction of a cylindrical ball bearing phantom (so as to avoid the influence of the shape and orientation of the imaging object), showed an order of magnitude (11.5 times) reduction in the out-of-plane RMS errors in comparison to single-plane fluoroscopy. With this new method, complete 3D pose of the patellofemoral and tibiofemoral joints during quasi-static activities can be determined with a many-fold (up to 8 times) (3.4mm) improvement in the out-of-plane accuracies compared to a conventional single-plane fluoroscopy setup.  相似文献   
56.
Accelerated cell death 11 (ACD11) is an autoimmune gene that suppresses pathogen infection in plants by preventing plant cells from becoming infected by any pathogen. This gene is widely known for growth inhibition, premature leaf chlorosis, and defense-related programmed cell death (PCD) in seedlings before flowering in Arabidopsis plant. Specific amino acid changes in the ACD11 protein’s highly conserved domains are linked to autoimmune symptoms including constitutive defensive responses and necrosis without pathogen awareness. The molecular aspect of the aberrant activity of the ACD11 protein is difficult to ascertain. The purpose of our study was to find the most deleterious mutation position in the ACD11 protein and correlate them with their abnormal expression pattern. Using several computational methods, we discovered PCD vulnerable single nucleotide polymorphisms (SNPs) in ACD11. We analysed the RNA-Seq data, identified the detrimental nonsynonymous SNPs (nsSNP), built genetically mutated protein structures and used molecular docking to assess the impact of mutation. Our results demonstrated that the A15T and A39D mutations in the GLTP domain were likely to be extremely detrimental mutations that inhibit the expression of the ACD11 protein domain by destabilizing its composition, as well as disrupt its catalytic effectiveness. When compared to the A15T mutant, the A39D mutant was more likely to destabilize the protein structure. In conclusion, these mutants can aid in the better understanding of the vast pool of PCD susceptibilities connected to ACD11 gene GLTP domain activation.  相似文献   
57.
Nucleic acids-based next generation biopharmaceuticals (i.e., pDNA, oligonucleotides, short interfering RNA) are potential pioneering materials to cope with various incurable diseases. However, several biological barriers present a challenge for efficient gene delivery. On the other hand, developments in nanotechnology now offer numerous non-viral vectors that have been fabricated and found capable of transmitting the biopharmaceuticals into the cell and even into specific subcellular compartments like mitochondria. This overview illustrates cellular barriers and current status of non-viral gene vectors, i.e., lipoplexes, liposomes, polyplexes, and nanoparticles, to relocate therapeutic DNA-based nanomedicine into the target cell. Despite the awesome impact of physical methods (i.e., ultrasound, electroporation), chemical methods have been shown to accomplish high-level and safe transgene expression. Further comprehension of barriers and the mechanism of cellular uptake will facilitate development of nucleic acids-based nanotherapy for alleviation of various disorders.  相似文献   
58.
Summary Several alleles of the nivea locus of Antirrhinum majus, both stable and unstable, have been characterised genetically (Harrison and Carpenter 1973 a, b). In this work the niv-44 allele is characterised at the molecular level. It contains a 5kb insertion element, Tam 2, which has 14 base pair inverted repeats. There is a three base pair duplication at the target site, which is at the first intron-exon boundary of the chalcone synthase gene. Tam 2 homologous sequences are present in multiple copies in several A. majus lines, including niv-53, and most have at least a 2.9 kb sequence in common with the copy at the chalcone synthase gene. Possible reasons for the apparent stability of the niv-44 allele and molecular explanations for the role of this allele in paramutation in A. majus are discussed.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   
59.
Nicotinamide adenine dinucleotide (NAD) is an important cofactor that regulates various biological processes, including metabolism and gene expression. As a coenzyme, NAD controls mitochondrial respiration through enzymes of the tricarboxylic acid (TCA) cycle, β‐oxidation, and oxidative phosphorylation and also serves as a substrate for posttranslational protein modifications, such as deacetylation and ADP‐ribosylation by sirtuins and poly(ADP‐ribose) polymerase (PARP), respectively. Many studies have demonstrated that NAD levels decrease with aging and that these declines cause various aging‐associated diseases. In contrast, activation of NAD metabolism prevents declines in NAD levels during aging. In particular, dietary supplementation with NAD precursors has been associated with protection against age‐associated insulin resistance. However, it remains unclear which NAD synthesis pathway is important and/or efficient at increasing NAD levels in vivo. In this study, Nmnat3 overexpression in mice efficiently increased NAD levels in various tissues and prevented aging‐related declines in NAD levels. We also demonstrated that Nmnat3‐overexpressing (Nmnat3 Tg) mice were protected against diet‐induced and aging‐associated insulin resistance. Moreover, in skeletal muscles of Nmnat3 Tg mice, TCA cycle activity was significantly enhanced, and the energy source for oxidative phosphorylation was shifted toward fatty acid oxidation. Furthermore, reactive oxygen species (ROS) generation was significantly suppressed in aged Nmnat3 Tg mice. Interestingly, we also found that concentrations of the NAD analog nicotinamide guanine dinucleotide (NGD) were dramatically increased in Nmnat3 Tg mice. These results suggest that Nmnat3 overexpression improves metabolic health and that Nmnat3 is an attractive therapeutic target for metabolic disorders that are caused by aging.  相似文献   
60.
Garlic has been claimed to be effective against diseases, in the pathophysiology of which oxygen free radicals (OFRs) have been implicated. Effectiveness of garlic could be due to its ability to scavenge OFRs. However, its antioxidant activity is not known. We investigated the ability of allicin (active ingredient of garlic) contained in the commercial preparation Garlicin to scavenge hydroxyl radicals (·OH) using high pressure liquid chromatographic (HPLC) method. ·OH was generated by photolysis of H2O2 (1.25–10 moles/ml) with ultraviolet light and was trapped with salicylic acid which is hydroxylated to produce ·OH adduct products 2,3- and 2,5-dihydroxybenzoic acid (DHBA). H2O2 produced a concentration-dependent ·OH as estimated by ·OH adduct products 2,3-DHBA and 2,5-DHBA. Allicin equivalent in Garlicin (1.8, 3.6, 7.2, 14.4, 21.6, 28.8 and 36 g) produced concentration-dependent decreases in the formation of 2,3-DHBA and 2,5-DHBA. The inhibition of formation of 2,3-DHBA and 2,5-DHBA with 1.8 g/ml was 32.36% and 43.2% respectively while with 36.0 g/ml the inhibition was approximately 94.0% and 90.0% respectively. The decrease in ·OH adduct products was due to scavenging of ·OH and not by scavenging of formed ·OH adduct products. Allicin prevented the lipid peroxidation of liver homogenate in a concentration-dependent manner. These results suggest that allicin scavenges ·OH and Garlicin has antioxidant activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号