首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8861篇
  免费   900篇
  国内免费   823篇
  2024年   22篇
  2023年   106篇
  2022年   196篇
  2021年   412篇
  2020年   324篇
  2019年   360篇
  2018年   328篇
  2017年   235篇
  2016年   373篇
  2015年   542篇
  2014年   593篇
  2013年   609篇
  2012年   722篇
  2011年   683篇
  2010年   441篇
  2009年   369篇
  2008年   482篇
  2007年   493篇
  2006年   424篇
  2005年   349篇
  2004年   306篇
  2003年   287篇
  2002年   247篇
  2001年   163篇
  2000年   123篇
  1999年   132篇
  1998年   102篇
  1997年   55篇
  1996年   69篇
  1995年   52篇
  1994年   52篇
  1993年   62篇
  1992年   61篇
  1991年   54篇
  1990年   50篇
  1989年   49篇
  1988年   44篇
  1987年   44篇
  1986年   33篇
  1985年   34篇
  1984年   19篇
  1983年   22篇
  1982年   14篇
  1981年   18篇
  1980年   18篇
  1979年   20篇
  1978年   16篇
  1974年   12篇
  1970年   14篇
  1968年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
We have cloned and sequenced a wound-inducible cDNA clone designated WIP1 (for wound-induced protein) from maize coleoptiles. It was isolated by differential screening of a cDNA library prepared from excised maize coleoptile segments. The deduced amino acid sequence predicts a secretory, cysteine-rich protein of 102 residues with a calculated molecular mass of 11 kDa and a typical N-terminal signal sequence. The protein has about 30% identity with various Bowman-Birk type proteinase inhibitors. Most interestingly, it is novel in that it is double-headed with exclusive specificity for chymotrypsin. WIP1 is strongly wound-induced in contrast to other members of the Bowman-Birk proteinase inhibitor family, which occur in seeds and are regulated during development. The response is fast, similar to defenceinduced genes, and measurable as early as 30 min after wounding. Induction can also be evoked in the intact coleoptiles and the signal is systemically transmitted in the coleoptile to adjacent regions of the wounded area. Isolation and analysis of the corresponding genomic clone reveals that WIP1 contains an intron of 90 nucleotides.  相似文献   
72.
73.
Summary We lay new foundations to the hypothesis that the genetic code is adapted to evolutionary retention of information in the antisense strands of natural DNA/RNA sequences. In particular, we show that the genetic code exhibits, beyond the neutral replacement patterns of amino acid substitutions, optimal properties by favoring simultaneous evolution of proteins encoded in DNA/RNA sense-antisense strands. This is borne out in the sense-antisense transformations of the codons of every amino acid which target amino acids physicochemically similar to each other. Moreover, silent mutations in the sense strand generate conservative ones in its antisense counterpart and vice versa. Coevolution of proteins coded by complementary strands is shown to be a definite possibility, a result which does not depend on any physical interaction between the coevolving proteins. Likewise, the degree to which the present genetic code is dedicated to evolutionary sense-antisense tolerance is demonstrated by comparison with many randomized codes. Double-strand coding is quantified from an information-theoretical point of view.  相似文献   
74.
A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments.  相似文献   
75.
Holophosphorylase kinase was digested with Glu-C specific protease; from the peptide mixture calmodulin binding peptides were isolated by affinity chromatography and identified by N-terminal sequence analysis. Two peptides originating from the subunit, having a high tendency to form a positively charged amphiphilic helix and containing tryptophane, were synthesized. Additionally, a homologous region of the subunit and a peptide from the subunit present in a region deleted in the isoform were also selected for synthesis. Binding stoichiometry and affinity were determined by following the enhancement in tryptophane fluorescence occurring upon 1:1 complex formation between these peptides and calmodulin. Finally, Ca2+ binding to calmodulin in presence of peptides was measured. By this way, the peptides 542–566, 547–571, 660–677 and 597–614 have been found to bind specifically to calmodulin.Together with previously predicted and synthesized calmodulin binding peptides four calmodulin binding regions have been characterized on each the and subunits. It can be concluded that endogenous calmodulin can bind to two calmodulin binding regions in as well as to two regions in and . Exogenous calmodulin can bind to two regions in and in . A binding stoichiometry of 0.8mol of calmodulin/ protomer of phosphorylase kinase has been determined by inhibiting the ubiquitination of calmodulin with phosphorylase kinase. Phosphorylase kinase is half maximally activated by 23nM calmodulin which is in the affinity range of calmodulin binding peptides from to calmodulin. Therefore, binding of exogenous calmodulin to activates the enzyme. A model for switching endogenous calmodulin between , and and modulation of ATP binding to as well as Mg2+/ADP binding to by calmodulin is presented.  相似文献   
76.
Ichthyological Research - A new snailfish, Careproctus tomiyamai, is described on the basis of four specimens collected from Suruga Bay, Tosa Bay, and the Hyuga-nada Sea, southern Japan...  相似文献   
77.
中国优质水果资源的分布与适宜生态环境   总被引:3,自引:0,他引:3  
根据农业部在80年代两次组织评选出的全国189个优质水果产地的生态环境资料,用微型电子计算机系统建立数据库,统计分析柑桔、苹果和梨优质产品的构成比例、产区分布地域及其适宜的环境指标和主栽品种的生态适应性,为果树良种区域化栽培与选育提供依据。  相似文献   
78.
79.
RNF7 has been reported to play critical roles in various cancers. However, the underlying mechanisms of RNF7 in glioma development remain largely unknown. Herein, the expression level of RNF7 was examined in tissues by quantitative real-time PCR, Western blotting and immunohistochemistry. The effect of RNF7 on glioma progression was measured by performing CCK-8 and apoptosis assays, cell cycle-related experiments and animal experiments. The effect of RNF7 on PI3K/AKT signalling pathway was tested by Western blotting. First, we found that RNF7 was upregulated in tumour tissue compared with normal brain tissue, especially in high-grade glioma, and the high expression of RNF7 was significantly related to tumour size, Karnofsky Performance Scale score and a poor prognosis. Second, RNF7 overexpression facilitated tumour cell cycle progression and cell proliferation and suppressed apoptosis. Conversely, RNF7 knockdown suppressed tumour cell cycle progression and cell proliferation and facilitated apoptosis. Furthermore, follow-up mechanistic studies indicated that RNF7 could facilitate glioma cell proliferation and cell cycle progression and inhibit apoptosis by activating the PI3K/AKT signalling pathway. This study shows that RNF7 can clearly promote glioma cell proliferation by facilitating cell cycle progression and inhibiting apoptosis by activating the PI3K/AKT signalling pathway. Targeting the RNF7/PI3K/AKT axis may provide a new perspective on the prevention or treatment of glioma.  相似文献   
80.
The three-dimensional X-ray structure of a recombinant human mitochondrial manganese superoxide dismutase (MnSOD) (chain length 198 residues) was determined by the method of molecular replacement using the related structure of MnSOD from Thermus thermophilus as a search model. This tetrameric human MnSOD crystallizes in space group P2(1)2(1)2 with a dimer in the asymmetric unit (Wagner, U.G., Werber, M.M., Beck, Y., Hartman, J.R., Frolow, F., & Sussman, J.L., 1989, J. Mol. Biol. 206, 787-788). Refinement of the protein structure (3,148 atoms with Mn and no solvents), with restraints maintaining noncrystallographic symmetry, converged at an R-factor of 0.207 using all data from 8.0 to 3.2 A resolution and group thermal parameters. The monomer-monomer interactions typical of bacterial Fe- and Mn-containing SODs are retained in the human enzyme, but the dimer-dimer interactions that form the tetramer are very different from those found in the structure of MnSOD from T. thermophilus. In human MnSOD one of the dimers is rotated by 84 degrees relative to its equivalent in the thermophile enzyme. As a result the monomers are arranged in an approximately tetrahedral array, the dimer-dimer packing is more intimate than observed in the bacterial MnSOD from T. thermophilus, and the dimers interdigitate. The metal-ligand interactions, determined by refinement and verified by computation of omit maps, are identical to those observed in T. thermophilus MnSOD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号