全文获取类型
收费全文 | 156638篇 |
免费 | 24301篇 |
国内免费 | 11201篇 |
专业分类
192140篇 |
出版年
2024年 | 304篇 |
2023年 | 1743篇 |
2022年 | 4017篇 |
2021年 | 7080篇 |
2020年 | 6305篇 |
2019年 | 8859篇 |
2018年 | 8647篇 |
2017年 | 7620篇 |
2016年 | 9257篇 |
2015年 | 11685篇 |
2014年 | 12921篇 |
2013年 | 13973篇 |
2012年 | 13880篇 |
2011年 | 12424篇 |
2010年 | 9634篇 |
2009年 | 7722篇 |
2008年 | 7717篇 |
2007年 | 6677篇 |
2006年 | 5826篇 |
2005年 | 4749篇 |
2004年 | 4061篇 |
2003年 | 3675篇 |
2002年 | 3197篇 |
2001年 | 2690篇 |
2000年 | 2348篇 |
1999年 | 2275篇 |
1998年 | 1345篇 |
1997年 | 1283篇 |
1996年 | 1229篇 |
1995年 | 1090篇 |
1994年 | 1037篇 |
1993年 | 804篇 |
1992年 | 1089篇 |
1991年 | 801篇 |
1990年 | 619篇 |
1989年 | 598篇 |
1988年 | 452篇 |
1987年 | 429篇 |
1986年 | 330篇 |
1985年 | 356篇 |
1984年 | 186篇 |
1983年 | 195篇 |
1982年 | 122篇 |
1981年 | 105篇 |
1980年 | 74篇 |
1979年 | 93篇 |
1977年 | 61篇 |
1975年 | 56篇 |
1974年 | 57篇 |
1973年 | 58篇 |
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
Creatine kinase (CK, EC 2.7.3.2) plays a key role in the energy homeostasis of excitable cells. The cytosolic human CK isoenzymes exist as homodimers (HMCK and HBCK) or a heterodimer (MBCK) formed by the muscle CK subunit (M) and/or brain CK subunit (B) with highly conserved three-dimensional structures composed of a small N-terminal domain (NTD) and a large C-terminal domain (CTD). The isoforms of CK provide a novel system to investigate the sequence/structural determinants of multimeric/multidomain protein folding. In this research, the role of NTD and CTD as well as the domain interactions in CK folding was investigated by comparing the equilibrium and kinetic folding parameters of HMCK, HBCK, MBCK and two domain-swapped chimeric forms (BnMc and MnBc). Spectroscopic results indicated that the five proteins had distinct structural features depending on the domain organizations. MBCK BnMc had the smallest CD signals and the lowest stability against guanidine chloride-induced denaturation. During the biphasic kinetic refolding, three proteins (HMCK, BnMc and MnBc), which contained either the NTD or CTD of the M subunit and similar microenvironments of the Trp fluorophores, refolded about 10-fold faster than HBCK for both the fast and slow phase. The fast folding of these three proteins led to an accumulation of the aggregation-prone intermediate and slowed down the reactivation rate thereby during the kinetic refolding. Our results suggested that the intra- and inter-subunit domain interactions modified the behavior of kinetic refolding. The alternation of domain interactions based on isoenzymes also provides a valuable strategy to improve the properties of multidomain enzymes in biotechnology. 相似文献
992.
993.
994.
Zhou J Ma Q Yi H Wang L Song H Yuan YJ 《Applied and environmental microbiology》2011,77(19):7023-7030
The metabolic cooperation in the ecosystem of Bacillus megaterium and Ketogulonicigenium vulgare was investigated by cultivating them spatially on a soft agar plate. We found that B. megaterium swarmed in a direction along the trace of K. vulgare on the agar plate. Metabolomics based on gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) was employed to analyze the interaction mechanism between the two microorganisms. We found that the microorganisms interact by exchanging a number of metabolites. Both intracellular metabolism and cell-cell communication via metabolic cooperation were essential in determining the population dynamics of the ecosystem. The contents of amino acids and other nutritional compounds in K. vulgare were rather low in comparison to those in B. megaterium, but the levels of these compounds in the medium surrounding K. vulgare were fairly high, even higher than in fresh medium. Erythrose, erythritol, guanine, and inositol accumulated around B. megaterium were consumed by K. vulgare upon its migration. The oxidization products of K. vulgare, including 2-keto-gulonic acids (2KGA), were sharply increased. Upon coculturing of B. megaterium and K. vulgare, 2,6-dipicolinic acid (the biomarker of sporulation of B. megaterium), was remarkably increased compared with those in the monocultures. Therefore, the interactions between B. megaterium and K. vulgare were a synergistic combination of mutualism and antagonism. This paper is the first to systematically identify a symbiotic interaction mechanism via metabolites in the ecosystem established by two isolated colonies of B. megaterium and K. vulgare. 相似文献
995.
Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice 总被引:1,自引:0,他引:1
Hybrids between different inbred varieties display novel patterns of gene expression resulted from parental variation in allelic nucleotide sequences. To study the function of chromatin regulators in hybrid gene expression, the histone deacetylase gene OsHDT1 whose expression displayed a circadian rhythm was over-expressed or inactivated by RNAi in an elite rice parent. Increased OsHDT1 expression did not affect plant growth in the parent but led to early flowering in the hybrid. Nonadditive up-regulation of key flowering time genes was found to be related to flowering time of the hybrid. Over-expression of OsHDT1 repressed the nonadditive expression of the key flowering repressors in the hybrid (i.e. OsGI and Hd1) inducing early flowering. Analysis of histone acetylation suggested that OsHDT1 over-expression might promote deacetylation on OsGI and Hd1 chromatin during the peak expression phase. High throughput differential gene expression analysis revealed that altered OsHDT1 levels affected nonadditive expression of many genes in the hybrid. These data demonstrate that nonadditive gene expression was involved in flowering time control in the hybrid rice and that OsHDT1 level was important for nonadditive or differential expression of many genes including the flowering time genes, suggesting that OsHDT1 may be involved in epigenetic control of parental genome interaction for differential gene expression. 相似文献
996.
miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2'-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p<0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study. 相似文献
997.
Increasing evidence suggests that dendritic cells (DCs) and oxidized low-density lipoprotein (ox-LDL) participate in atherosclerosis. However, few data on the molecular mechanisms of this process are available. To address this question, we used iTRAQ labeling followed by LC-MS/MS analysis to identify many proteins that changed markedly during the maturation of dendritic cells stimulated with ox-LDL. Among a total of 781 identified proteins, 93 were upregulated and 100 were downregulated. The major and significant changes in upregulated proteins were that ox-LDL not only affected the levels of intracellular cathepsins G, Z, D and S, but also significantly enhanced cathepsin S secretion by the treated cells. Our results may provide clues for a more comprehensive understanding the pathogenesis of atherosclerosis. 相似文献
998.
Background
Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB) infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages.Methodology/Principal Findings
The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT) carriers and 78 immune activated (IA) patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16+ subsets, which were closely associated with serum alanine aminotransferase (ALT) levels and the liver histological activity index (HAI) scores. In addition, the increased CD16+ monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16− monocytes/macrophages. Furthermore, peripheral blood CD16+ monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores.Conclusions
These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease. 相似文献999.
1000.
Oxidized low density lipoprotein (oxLDL) is believed to play a central role in atherogenesis. LDL is oxidized in the arterial intima by mechanisms that are still only partially understood. OxLDL is then taken up by macrophages through scavenger receptor-mediated endocytosis, which then leads to cellular damage, including apoptosis. The complex mechanisms by which oxLDL induces cell injury are mostly unknown. This study has demonstrated that oxLDL-induced damage of macrophages is associated with iron-mediated intralysosomal oxidative reactions, which cause partial lysosomal rupture and ensuing apoptosis. This series of events can be prevented by pre-exposing cells to the iron-chelator, desferrioxamine (DFO), whereas it is augmented by pretreating the cells with a low molecular weight iron complex. Since both DFO and the iron complex would be taken up by endocytosis, and thus directed to the lysosomal compartment, the results suggest that the normal contents of lysosomal low molecular weight iron may play an important role in oxLDL-induced cell damage, presumably by catalyzing intralysosomal fragmentation of lipid peroxides and the formation of toxic aldehydes and oxygen-centered radicals. 相似文献