首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125960篇
  免费   3487篇
  国内免费   5371篇
  2024年   129篇
  2023年   548篇
  2022年   1157篇
  2021年   1929篇
  2020年   1397篇
  2019年   1714篇
  2018年   13067篇
  2017年   11579篇
  2016年   8802篇
  2015年   2864篇
  2014年   3031篇
  2013年   3135篇
  2012年   7523篇
  2011年   15571篇
  2010年   13780篇
  2009年   9878篇
  2008年   11660篇
  2007年   13091篇
  2006年   1809篇
  2005年   1857篇
  2004年   2049篇
  2003年   2024篇
  2002年   1607篇
  2001年   791篇
  2000年   580篇
  1999年   461篇
  1998年   324篇
  1997年   262篇
  1996年   235篇
  1995年   174篇
  1994年   162篇
  1993年   150篇
  1992年   142篇
  1991年   145篇
  1990年   89篇
  1989年   93篇
  1988年   85篇
  1987年   61篇
  1986年   47篇
  1985年   54篇
  1984年   28篇
  1983年   40篇
  1982年   20篇
  1981年   18篇
  1972年   246篇
  1971年   275篇
  1965年   15篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.  相似文献   
992.

Background

Autonomic nervous system dysfunction is implicated in the etiopathogenesis of inflammatory bowel diseases (IBD). Therapies that increase cardiovagal activity, such as Mind-Body interventions, are currently confirmed to be effective in clinical trials in IBD. However, a poor understanding of pathophysiological mechanisms limits the popularization of therapies in clinical practice. The aim of the present study was to explore the mechanisms of these therapies against 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats using a chronic vagus nerve stimulation model in vivo, as well as the lipopolysaccharide (LPS)-induced inflammatory response in human epithelial colorectal adenocarcinoma cells (Caco-2) by acetylcholine in vitro.

Methods and Results

Colitis was induced in rats with rectal instillation of TNBS, and the effect of chronic VNS (0.25 mA, 20 Hz, 500 ms) on colonic inflammation was evaluated. Inflammatory responses were assessed by disease activity index (DAI), histological scores, myeloperoxidase (MPO) activity, inducible nitric oxide synthase (iNOS), TNF-α and IL-6 production. The expression of Mitogen-activated protein kinases (MAPK) family members, IκB-α, and nuclear NF-κB p65 were studied by immunoblotting. Heart rate variability (HRV) analysis was also applied to assess the sympathetic-vagal balance. DAI, histological scores, MPO activity, iNOS, TNF-α and IL-6 levels were significantly decreased by chronic VNS. Moreover, both VNS and acetylcholine reduced the phosphorylation of MAPKs and prevented the nuclear translocation of NF-κB p65. Methyllycaconitine (MLA) only reversed the inhibitory effect on p-ERK and intranuclear NF-κB p65 expression by ACh in vitro, no significant change was observed in the expression of p-p38 MAPK or p-JNK by MLA.

Conclusion

Vagal activity modification contributes to the beneficial effects of the cholinergic anti-inflammatory pathway in IBD-related inflamed colonic mucosa based on the activation of MAPKs and nuclear translocation of NF-κB. Our work may provide key pathophysiological mechanistic evidence for novel therapeutic strategies that increase the cardiovagal activity in IBD patients.  相似文献   
993.

Background

Most studies have suggested that elevated body mass index (BMI) was associated with the risk of death from all cause and from specific causes. However, there was little evidence illustrating the effect of BMI on the mortality in elderly hypertensive patients in Chinese population.

Methods

The information of 10,957 hypertensive patients at baseline not less than 60 years were from Xinzhuang, a town in Minhang district of Shanghai, was extracted from the Electronic Health Record (EHR) system. All study participants were divided into eight categories of baseline BMI (with cut-points at 18, 20, 22, 24, 26, 28 and 30 kg/m2). Relative hazard ratio of death from all cause, cardiovascular and non-cardiovascular cause by baseline BMI groups were calculated, standardized for sex, age, smoking, drinking, physical activity, systolic blood pressure, history of cardiovascular disorders, serum lipid disturbance, diabetes mellitus and antihypertensive drug treatment.

Results

During follow up (median: 3.7 years), 561 deaths occurred. Underweight (BMI<18 kg/m2) was associated with significantly increased mortality from all cause mortality (OR: 2.00; 95% CI: 1.43–2.79) and non cardiovascular mortality (OR: 2.76; 95% CI: 1.87–4.07), but not with cardiovascular mortality. For the cause specific analysis, the underweight was associated significantly with neoplasms (OR: 2.15; 95% CI: 1.16–4.00) and respiratory disorders (OR: 3.41; 95% CI: 1.64–7.06). The results for total mortality and specific cause mortality were not influenced by sex, age and smoking status.

Conclusion

Our study revealed an association between underweight and increased mortality from non-cardiovascular disorders in elderly hypertensive patients in Chinese community. Overweight and obesity were not associated with all cause or cause specific death.  相似文献   
994.

Background

To isolate plant-derived compounds with antimicrobial activity from the leaves of Mikania micrantha, to determine the compounds configuration, and to evaluate their antimicrobial activity against eight plant pathogenic fungi (Exserohilum turcicum, Colletotrichum lagenarium, Pseudoperonispora cubensis, Botrytis cirerea, Rhizoctonia solani, Phytophthora parasitica, Fusarium solani, and Pythium aphanidermatum,) and four plant pathogenic bacteria (gram negative bacteria: Ralstonia dolaanacearum, Xanthomonas oryzae pv. Oryzae, Xanthomonas Campestris pv. Vesicatoria, and Xanthomonas campestris pv. Citri), and four bacteria (gram positive bacteria: Staphyloccocus aureus, Bacillus subtilis, Micrococcus luteus, and Bacillus cereus).

Methods and Results

Antimicrobial constituents of the leaves of M. micrantha were isolated using bioactivity- guided fractionation. The antifungal activity of the isolated compounds was evaluated by the inhibit hypha growth method and inhibit spore germination method. Characterization of antibacterial activity was carried out using the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). MIC and MBC were determined by the broth microdilution method. Six compounds – deoxymikanolide, scandenolide, dihydroscandenolide, mikanolide, dihydromikanolide, and m - methoxy benzoic acid – have been isolated from leaves of Mikania micrantha H. B. K. Deoxymikanolide, scandenolide, and dihydroscandenolide were new compounds. The result of bioassay showed that all of isolated compounds were effective against tested strains and deoxymikanolide showed the strongest activity.

Conclusions and Significance

The leaves of M. micrantha may be a promising source in the search for new antimicrobial drugs due to its efficacy and the broadest range. Meanwhile, adverse impact of M. micrantha will be eliminated.  相似文献   
995.
Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns.  相似文献   
996.
The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo.  相似文献   
997.
Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows.  相似文献   
998.
999.

Scopes

To investigate the effects of high-fat diet enriched with lard oil or soybean oil on liver endoplasmic reticulum (ER) stress and inflammation markers in diet-induced obese (DIO) rats and estimate the influence of following low-fat diet feeding.

Methods and Results

Male SD rats were fed with standard low-fat diet (LF, n = 10) and two isoenergentic high-fat diets enriched with lard (HL, n = 45) or soybean oil (HS, n = 45) respectively for 10 weeks. Then DIO rats from HL and HS were fed either high-fat diet continuously (HL/HL, HS/HS) or switched to low-fat diet (HL/LF, HS/LF) for another 8 weeks. Rats in control group were maintained with low-fat diet. Body fat, serum insulin level, HOMA-IR and ectopic lipid deposition in liver were increased in HL/HL and HS/HS compared to control, but increased to a greater extent in HL/HL compared to HS/HS. Markers of ER stress including PERK and CHOP protein expression and phosphorylation of eIF2α were significantly elevated in HL/HL group while phosphorylation of IRE1α and GRP78 protein expression were suppressed in both HL/HL and HS/HS. Besides, inflammatory signals (OPN, TLR2, TLR4 and TNF-α) expressions significantly increased in HL/HL compared to others. Switching to low-fat diet reduced liver fat deposition, HOMA-IR, mRNA expression of TLR4, TNF-α, PERK in both HL/LF and HS/LF, but only decreased protein expression of OPN, PERK and CHOP in HL/LF group. In addition, HL/LF and HS/LF exhibited decreased phosphorylation of eIF2α and increased phosphorylation of IRE1α and GRP78 protein expression when compared with HL/HL and HS/HS respectively.

Conclusions

Lard oil was more deleterious in insulin resistance and hepatic steatosis via promoting ER stress and inflammation responses in DIO rats, which may be attributed to the enrichment of saturated fatty acid. Low-fat diet was confirmed to be useful in recovering from impaired insulin sensitivity and liver fat deposition in this study.  相似文献   
1000.
The fatty acid elongase 1 (FAE1) gene catalyzes the initial condensation step in the elongation pathway of VLCFA (very long chain fatty acid) biosynthesis and is thus a key gene in erucic acid biosynthesis. Based on a worldwide collection of 62 accessions representing 14 tribes, 31 genera, 51 species, 4 subspecies and 7 varieties, we conducted a phylogenetic reconstruction and correlation analysis between genetic variations in the FAE1 gene and the erucic acid trait, attempting to gain insight into the evolutionary patterns and the correlations between genetic variations in FAE1 and trait variations. The five clear, deeply diverged clades detected in the phylogenetic reconstruction are largely congruent with a previous multiple gene-derived phylogeny. The Ka/Ks ratio (<1) and overall low level of nucleotide diversity in the FAE1 gene suggest that purifying selection is the major evolutionary force acting on this gene. Sequence variations in FAE1 show a strong correlation with the content of erucic acid in seeds, suggesting a causal link between the two. Furthermore, we detected 16 mutations that were fixed between the low and high phenotypes of the FAE1 gene, which constitute candidate active sites in this gene for altering the content of erucic acid in seeds. Our findings begin to shed light on the evolutionary pattern of this important gene and represent the first step in elucidating how the sequence variations impact the production of erucic acid in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号