首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   181篇
  2021年   12篇
  2020年   10篇
  2016年   12篇
  2015年   42篇
  2014年   41篇
  2013年   48篇
  2012年   65篇
  2011年   48篇
  2010年   40篇
  2009年   34篇
  2008年   42篇
  2007年   50篇
  2006年   48篇
  2005年   46篇
  2004年   45篇
  2003年   41篇
  2002年   53篇
  2001年   39篇
  2000年   53篇
  1999年   34篇
  1998年   19篇
  1997年   18篇
  1996年   17篇
  1995年   15篇
  1994年   9篇
  1993年   17篇
  1992年   49篇
  1991年   43篇
  1990年   24篇
  1989年   43篇
  1988年   29篇
  1987年   27篇
  1986年   30篇
  1985年   23篇
  1984年   26篇
  1983年   26篇
  1982年   21篇
  1981年   17篇
  1980年   19篇
  1979年   19篇
  1978年   19篇
  1977年   15篇
  1976年   21篇
  1975年   23篇
  1974年   17篇
  1973年   15篇
  1972年   16篇
  1970年   15篇
  1968年   11篇
  1967年   14篇
排序方式: 共有1561条查询结果,搜索用时 15 毫秒
141.
Insulin acutely stimulates cyclic guanosine monophosphate (cGMP) production in primary confluent cultured vascular smooth muscle cells (VSMC) from canine femoral artery, but the mechanism is not known. These cells contain the inducible isoform of nitric oxide (NO) synthase (iNOS), and insulin-stimulated cGMP production in confluent cultured cells is blocked by the NOS inhibitor, N(G)-monomethyl-L-arginine (L-NMMA). In the present study, it is shown that iNOS is also present in freshly dispersed VSMC from this artery, indicating that iNOS expression in cultured VSMC is not an artifact of the culture process. Insulin did not stimulate NOS activity in primary confluent cultured cells because it did not affect citrulline or combined NO(-)(3)/NO(-)(2) production. To see whether insulin required the permissive presence of NO to stimulate cGMP production, iNOS and basal cGMP production were inhibited with L-NMMA, and the cells were incubated with or without 1 nM insulin and/or the NO donor, S-nitroso-N-acetyl-D,L-penicillamine (SNAP) at a concentration (0.1 microM) that restored cGMP production to the basal value. In the presence of L-NMMA, insulin no longer affected cGMP production but when insulin was added to L-NMMA plus SNAP, cGMP production was increased by 69% (P < 0.05 vs. L-NMMA plus SNAP). Insulin, which increases glucose uptake by these cells, increased the cell lactate content and the lactate-to-pyruvate ratio (LPR) by 81 and 97%, respectively (both P < 0.05), indicating that the hormone increased aerobic glycolysis and the redox potential. The effects of insulin on LPR and cGMP production were blocked by removing glucose or by adding 2-deoxyglucose to the incubation media and were duplicated by the reducing substrate, beta-hydroxybutyrate. We conclude that insulin does not acutely affect iNOS activity in these VSMC but it does augment cGMP production induced by the NO already present in the cell while increasing aerobic glycolysis and the cell redox potential.  相似文献   
142.
143.
The dicarboxylate transport (Dct) system of Sinorhizobium meliloti, which is essential for a functional nitrogen-fixing symbiosis, has been thought to transport only dicarboxylic acids. We show here that the permease component of the Dct system, DctA, can transport orotate, a monocarboxylic acid, with an apparent K(m) of 1.7 mM and a V(max) of 163 nmol min(-1) per mg of protein in induced cells. DctA was not induced by the presence of orotate. The transport of orotate was inhibited by several compounds, including succinamic acid and succinamide, which are not dicarboxylic acids. The dicarboxylic acid maleate (cis-butenedioic acid) was not an inhibitor of orotate transport, which suggests that it was not recognized by DctA. However, maleate was an excellent inducer of DctA expression. Our evaluation of 17 compounds as inducers and inhibitors of transport suggests that substrates recognized by S. meliloti DctA must have appropriately spaced carbonyl groups and an extended conformation, while good inducers are more likely to have a curved conformation.  相似文献   
144.
145.
Recent studies have suggested that IL-12 and IFN-gamma may impair the ability of fed Ag to induce systemic tolerance. Because both of these cytokines can function to directly or indirectly induce inducible NO synthase (iNOS) expression, we have investigated whether the functional expression of iNOS regulates oral tolerance. C57BL/6J wild-type or C57BL/6J NOS2(-/-) mice were gavaged with a single dose of 20 mg of keyhole limpet hemocyanin (KLH), followed by s.c. immunization with KLH/CFA. In the absence of feeding Ag, several parameters of the immune response were more robust in C57BL/6J NOS2(-/-) mice following KLH/CFA immunization, including the magnitude of the delayed-type hypersensitivity response, the proliferative response, and the production of IFN-gamma and IL-2 by Ag-activated draining lymph node cells. These heightened responses in the C57BL/6J NOS2(-/-) mice are still effectively inhibited by feeding KLH. Feeding KLH to the C57BL/6J NOS2(-/-) mice elicited heightened TGF-ss1 production by Ag-activated lymphocytes, as well as augmented total IgG, IgG1, and IgG2a responses to KLH/CFA compared with that seen in Ag-fed wild-type mice. Feeding Ag to the NOS2(-/-) mice suppressed proliferative responses and IFN-gamma production, while increasing IL-4 production and the IgG1/IgG2a ratio even following a booster immunization of KLH/CFA. Administrating L-N:(6)-(1-iminoethyl)-lysine. 2HCl to wild-type mice during the period of Ag feeding reproduced the high TGF-ss1 production seen in Ag-activated lymphocytes from Ag-fed NOS2(-/-) mice. Feeding KLH is followed by transient up-regulation of NOS2 mRNA expression in the Peyer's patches of wild-type mice. Selective inhibition of NOS2 may be a simple way to augment tolerogenic mucosal immune responses.  相似文献   
146.
We have previously shown that the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin has sequence characteristics of immunoglobulin-like proteins and have successfully modeled residues 200-325, based on the structure of immunoglobulin variable-type domains. Alignments matching residues 20-200 of alpha-agglutinin with domains I and II of members of the CD2/CD4 subfamily of the immunoglobulin superfamily showed > 80% conservation of key residues despite low sequence similarity overall. Three-dimensional models of two alpha-agglutinin domains constructed on the basis of these alignments were shown to conform to peptide mapping data and biophysical properties of alpha-agglutinin. In addition, the residue volume and surface accessibility characteristics of these models resembled those of the well-packed structures of related proteins. Residue-by-residue analysis showed that packing and accessibility anomalies were largely confined to glycosylated and protease-susceptible loop regions of the domains. Surface accessibility of hydrophobic residues was typical of proteins with extensive domain interactions, a finding compatible with the hydrodynamic properties of alpha -agglutinin and the hydrophobic nature of binding to its peptide ligand alpha-agglutinin. The procedures used to align the alpha-agglutinin sequence and test the quality of the model may be applicable to other proteins, especially those that resist crystallization because of extensive glycosylation.  相似文献   
147.
The signaling pathway by which insulin stimulates insulin secretion and increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in isolated mouse pancreatic beta-cells and clonal beta-cells was investigated. Application of insulin to single beta-cells resulted in increases in [Ca(2+)](i) that were of lower magnitude, slower onset, and longer lifetime than that observed with stimulation with tolbutamide. Furthermore, the increases in [Ca(2+)](i) originated from interior regions of the cell rather than from the plasma membrane as with depolarizing stimuli. The insulin-induced [Ca(2+)](i) changes and insulin secretion at single beta-cells were abolished by treatment with 100 nm wortmannin or 1 micrometer thapsigargin; however, they were unaffected by 10 micrometer U73122, 20 micrometer nifedipine, or removal of Ca(2+) from the medium. Insulin-stimulated insulin secretion was also abolished by treatment with 2 micrometer bisindolylmaleimide I, but [Ca(2+)](i) changes were unaffected. In an insulin receptor substrate-1 gene disrupted beta-cell tumor line, insulin did not evoke either [Ca(2+)](i) changes or insulin secretion. The data suggest that autocrine-activated increases in [Ca(2+)](i) are due to release of intracellular Ca(2+) stores, especially the endoplasmic reticulum, mediated by insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Autocrine activation of insulin secretion is mediated by the increase in [Ca(2+)](i) and activation of protein kinase C.  相似文献   
148.
BACKGROUND: The traditional picture of charged amino acids in globular proteins is that they are almost exclusively on the outside exposed to the solvent. Buried charges, when they do occur, are assumed to play an essential role in catalysis and ligand binding, or in stabilizing structure as, for instance, helix caps. RESULTS: By analyzing the amount and distribution of buried charged surface and charges in proteins over a broad range of protein sizes, we show that buried charge is much more common than is generally believed. We also show that the amount of buried charge rises with protein size in a manner which differs from other types of surfaces, especially aromatic and polar uncharged surfaces. In large proteins such as hemocyanin, 35% of all charges are greater than 75% buried. Furthermore, at all sizes few charged groups are fully exposed. As an experimental test, we show that replacement of the buried D178 of muconate lactonizing enzyme by N stabilizes the enzyme by 4.2 degrees C without any change in crystallographic structure. In addition, free energy calculations of stability support the experimental results. CONCLUSIONS: Nature may use charge burial to reduce protein stability; not all buried charges are fully stabilized by a prearranged protein environment. Consistent with this view, thermophilic proteins often have less buried charge. Modifying the amount of buried charge at carefully chosen sites may thus provide a general route for changing the thermophilicity or psychrophilicity of proteins.  相似文献   
149.
The liver plays a central role in the control of glucose homeostasis and is subject to complex regulation by substrates, insulin, and other hormones. To investigate the effect of the loss of direct insulin action in liver, we have used the Cre-loxP system to inactivate the insulin receptor gene in hepatocytes. Liver-specific insulin receptor knockout (LIRKO) mice exhibit dramatic insulin resistance, severe glucose intolerance, and a failure of insulin to suppress hepatic glucose production and to regulate hepatic gene expression. These alterations are paralleled by marked hyperinsulinemia due to a combination of increased insulin secretion and decreased insulin clearance. With aging, the LIRKO liver exhibits morphological and functional changes, and the metabolic phenotype becomes less severe. Thus, insulin signaling in liver is critical in regulating glucose homeostasis and maintaining normal hepatic function.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号