首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1349篇
  免费   181篇
  1530篇
  2021年   12篇
  2020年   10篇
  2016年   12篇
  2015年   38篇
  2014年   39篇
  2013年   47篇
  2012年   63篇
  2011年   46篇
  2010年   38篇
  2009年   31篇
  2008年   41篇
  2007年   48篇
  2006年   45篇
  2005年   45篇
  2004年   45篇
  2003年   41篇
  2002年   52篇
  2001年   39篇
  2000年   52篇
  1999年   34篇
  1998年   18篇
  1997年   18篇
  1996年   17篇
  1995年   14篇
  1993年   17篇
  1992年   49篇
  1991年   42篇
  1990年   24篇
  1989年   43篇
  1988年   29篇
  1987年   27篇
  1986年   30篇
  1985年   23篇
  1984年   26篇
  1983年   25篇
  1982年   20篇
  1981年   17篇
  1980年   19篇
  1979年   19篇
  1978年   19篇
  1977年   15篇
  1976年   21篇
  1975年   22篇
  1974年   17篇
  1973年   15篇
  1972年   16篇
  1971年   8篇
  1970年   15篇
  1968年   11篇
  1967年   14篇
排序方式: 共有1530条查询结果,搜索用时 0 毫秒
41.
42.
OBJECTIVE: To show the effect of 7-ketocholesterol (7KC) on cellular lipid content by means of flow cytometry and the interaction of 7KC with Nile Red (NR) via ultraviolet fluorescence resonance energy transfer (FRET) excitation of NR on U937 monocytic cells by means of 2-photon excitation confocal laser scanning microscopy (CLSM). STUDY DESIGN: Untreated and 7KC-treated U937 cells were stained with NR and analyzed by flow cytometry and CLSM. 3D sequences of images were obtained by spectral analysis in a 2-photon excitation CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, which provides factor curves and images. Factor images are the result of the FAMIS image processing method, which handles emission spectra. In FRET analysis, preparations are screened at selected UV wavelengths to avoid emission of NR in the absence of 7KC. RESULTS: During 7KC-induced cell death,flow cytometry and CLSM revealed a modification of the cellular lipid content. Factor images show FRET occurrence and subsequent colocalization of 7KC and NR. CONCLUSION: This investigation established the utility of 2-photon excitation CLSM to assess colocalization of 7KC with NR by FRET and to identify and distinguish polar and neutral lipids stained by NR that accumulate from the effect of 7KC.  相似文献   
43.
44.
p97 is a human tumor-associated Ag present on most melanoma cells that represents a possible target for immunologic attack. To evaluate the capacity of T cells reactive with this protein to promote elimination of melanoma cells expressing p97, a murine model was developed by transfecting a C3H/HeN melanoma with the p97 cDNA, generating p97-specific CD4+ T cells by in vivo immunization of C3H/HeN mice with a vaccinia/p97 recombinant virus followed by in vitro cloning with soluble p97 protein, and determining whether these CD4+ T cells could mediate rejection of pulmonary metastases. Characterization of the T cell clones demonstrated the presence of both I-Ak and I-Ek-restricted clones, although the majority of clones recognized p97 in the context of I-Ek. Analysis of clonal specificity using truncated p97 proteins revealed that at least three epitopes were immunogenic, and further studies with overlapping 15-amino acid peptides from a region of the p97 molecule defined by these truncated proteins identified an immunodominant epitope responsible for the majority of the I-Ek response. The T cell clones were not capable of directly recognizing the p97-expressing melanoma cells but responded to the tumor if syngeneic APC were present to process the tumor-derived p97 Ag. The therapeutic efficacy of these CD4+ T cell clones was evaluated in an adoptive therapy model in which mice bearing metastatic pulmonary lesions were treated by i.v. administration of the p97-specific cells. Despite the inability of the CD4+ clones to directly respond to or lyse the tumor cells, the clones were effective in promoting tumor eradication. In vitro studies demonstrated that this may have reflected secretion of lymphokines that activated macrophages to lyse the tumor. The results suggest that noncytolytic p97-specific CD4+ T cell clones can be effective in therapy of pulmonary melanoma metastases. Moreover, if human T cells reactive with the p97 protein could be generated, the expression of this tumor-associated Ag in melanoma cells might be adequate for such T cells to mediate a therapeutic antitumor response.  相似文献   
45.
It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans‐synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease‐associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP‐43, α‐synuclein, and the microtubule‐associated protein tau, can be driven out of the cell by an Hsc70 co‐chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.  相似文献   
46.
47.
A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V/I)KEX(L/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum cinnamic acid 4-hydroxylase were obtained.Reconstitution experiments with recombinant CYP71E1 heterologously expressed in Escherichia coli and sorghum NADPH–cytochrome P450–reductase in L--dilaurylphosphatidyl choline micelles identified CYP71E1 as the cytochrome P450 that catalyses the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile in dhurrin biosynthesis. In accordance to the proposed pathway for dhurrin biosynthesis CYP71E1 catalyses the dehydration of the oxime to the corresponding nitrile, followed by a C-hydroxylation of the nitrile to produce p-hydroxymandelonitrile. In vivo administration of oxime to E. coli cells results in the accumulation of the nitrile, which indicates that the flavodoxin/flavodoxin reductase system in E. coli is only able to support CYP71E1 in the dehydration reaction, and not in the subsequent C-hydroxylation reaction.CYP79 catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime, the first committed step in the biosynthesis of the cyanogenic glucoside dhurrin. Reconstitution of both CYP79 and CYP71E1 in combination with sorghum NADPH-cytochrome P450–reductase resulted in the conversion of tyrosine to p-hydroxymandelonitrile, i.e. the membranous part of the biosynthetic pathway of the cyanogenic glucoside dhurrin. Isolation of the cDNA for CYP71E1 together with the previously isolated cDNA for CYP79 provide important tools necessary for tissue-specific regulation of cyanogenic glucoside levels in plants to optimize food safety and pest resistance.  相似文献   
48.
49.
Summary Nitrate reductase (NR) assays revealed a bi-specific NAD(P)H-NR (EC 1.6.6.2.) to be the only nitrate-reducing enzyme in leaves of hydroponically grown birches. To obtain the primary structure of the NAD(P)H-NR, leaf poly(A)+ mRNA was used to construct a cDNA library in the lambda gt11 phage. Recombinant clones were screened with heterologous gene probes encoding NADH-NR from tobacco and squash. A 3.0 kb cDNA was isolated which hybridized to a 3.2 kb mRNA whose level was significantly higher in plants grown on nitrate than in those grown on ammonia. The nucleotide sequence of the cDNA comprises a reading frame encoding a protein of 898 amino acids which reveals 67%–77% identity with NADH-nitrate reductase sequences from higher plants. To identify conserved and variable regions of the multicentre electron-transfer protein a graphical evaluation of identities found in NR sequence alignments was carried out. Thirteen well-conserved sections exceeding a size of 10 amino acids were found in higher plant nitrate reductases. Sequence comparisons with related redox proteins indicate that about half of the conserved NR regions are involved in cofactor binding. The most striking difference in the birch NAD(P)H-NR sequence in comparison to NADH-NR sequences was found at the putative pyridine nucleotide binding site. Southern analysis indicates that the bi-specific NR is encoded by a single copy gene in birch. These sequence data appeared in the EMBL/GenBank/DDBJ nucleotide sequence data bases under the accession number X54097  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号