首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   23篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
11.
Many cell lines, despite the fact that they are easy to culture, tend to lose some of their in vivo characteristics in vitro, we therefore decided to investigate whether culturing HK-2 cells on kidney derived micro-scaffolds (KMS) could improve proximal tubule functionality to these cells. Kidney derived micro-scaffolds (KMS) have been prepared that, due to the fact that they are only 300 µm in depth, allow for transfer of gasses and nutrients via diffusion whilst maintaining the kidney's intricate microstructure. Culturing HK-2 on KMS shows significant increase in expression of AQP-1, ATP1B1, SLC23A1 and SLC5A2 after 1, 2 and 3 weeks compared with HK-2 grown under standard tissue culture conditions. Additionally, very high levels of expression of CCL-2 (15–30 fold increase) and LRP-2 (25–200 fold increase) were observed when the HK-2 were grown on KMS compared with HK-2 grown under standard tissue culture conditions. Furthermore, HK-2 cells grown under standard conditions released higher levels of Il-6 and Il-8 compared with primary tubule cells (Asterand AS-9-2) and secreted no MCP-1 or RANTES as opposed to primary cells that released MCP-1 and RANTES following stimulation. However, HK-2 grown on KMS showed both a marked decrease in Il-6/Il-8 secretion in line with the primary cells and secreted MCP-1 as well. These results show that the micro-environment of the KMS assists in restoring in vivo like properties to the HK-2 cells.  相似文献   
12.
Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.  相似文献   
13.
20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1   总被引:6,自引:0,他引:6  
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a very labile protein. ODC is a homodimeric enzyme that undergoes ubiquitin-independent proteasomal degradation via direct interaction with antizyme, a polyamine-induced protein. Binding of antizyme promotes the dissociation of ODC homodimers and marks ODC for degradation by the 26S proteasomes. We describe here an alternative pathway for ODC degradation that is regulated by NAD(P)H quinone oxidoreductase 1 (NQO1). We show that NQO1 binds and stabilizes ODC. Dicoumarol, an inhibitor of NQO1, dissociates ODC-NQO1 interaction and enhances ubiquitin-independent ODC proteasomal degradation. We further show that dicoumarol sensitizes ODC monomers to proteasomal degradation in an antizyme-independent manner. This process of NQO1-regulated ODC degradation was recapitulated in vitro by using purified 20S proteasomes. Finally, we show that the regulation of ODC stability by NQO1 is especially prominent under oxidative stress. Our findings assign to NQO1 a role in regulating ubiquitin-independent degradation of ODC by the 20S proteasomes.  相似文献   
14.
15.
It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers the mating efficiency of MATa strains. Likewise, rad6-delta reduces silencing of the telomere-located RNAP II-transcribed genes URA3 and ADE2. We also show that the RNAP III-transcribed tyrosyl tRNA gene, SUP4-o, is subject to position effect variegation when located near a telomere and that this silencing requires the RAD6 and SIR genes. Neither of the two known Rad6 binding factors, Rad18 and Ubr1, is required for telomeric silencing. Since Ubrl is the recognition component of the N-end rule-dependent protein degradation pathway, this suggests that N-end rule-dependent protein degradation is not involved in telomeric silencing. Telomeric silencing requires the amino terminus of Rad6. Two rad6 point mutations, rad6(C88A) and rad6(C88S), which are defective in ubiquitin-conjugating activity fail to complement the silencing defect, indicating that the ubiquitin-conjugating activity of RAD6 is essential for full telomeric silencing.  相似文献   
16.
The interaction with membrane lipids of recombinant fragments of human dystrophin, corresponding to a single structural repeating unit of the rod domain, was examined. Surface plasmon resonance, constant-pressure isotherms in a Langmuir surface film balance, and interfacial rheology were used to observe binding of the polypeptides and its effects on the properties of the lipid film. Modification of the monolayer properties was found to depend on the presence of phosphatidylserine in the lipid mixture and on the native tertiary fold of the polypeptide; thus a fragment with the minimum chain length required for folding (117 residues) or longer caused a contraction of the surface area at constant pressure, whereas fragments of 116 residues or less had no effect. The full extent of contraction was reached at a surface concentration of lipid corresponding to an average area of about 42 A2 per lipid molecule. A dystrophin fragment with the native, folded conformation induced a large increase in surface shear viscosity of the lipid film, whereas an unfolded fragment had no effect. Within a wide range of applied shear, the shear viscosity remained Newtonian. Binding of liposomes to immobilized dystrophin fragments could be observed by surface plasmon resonance and was again related to the conformational state of the polypeptide and the presence of phosphatidylserine in the liposomes. Our results render it likely that intact dystrophin interacts directly and strongly with the sarcolemmal lipid bilayer and grossly modifies its material properties.  相似文献   
17.
Mutants of Escherichia coli have been selected for the absence of 5'-nucleotidase (uridine diphosphate-sugar hydrolase) and 3'-nucleotidase (2',3'-cyclic phophodiesterase). Mutants selected for the absence of 5'-nucleotidase are of two kinds: those that lack detectable activity for the enzyme (Ush(-)), and those that possess activity when cell extracts are assayed, but not when intact cells are assayed (cryptic; Crp(-)). The latter class is probably identical to a type of mutant previously reported by Ward and Glaser. When mutants are selected for the absence of 3'-nucleotidase, Crp(-)mutants are also obtained. Thus far, however, mutants totally lacking this enzyme have not been found. The location on the genetic map of one ush mutation is at position 11 min and that of one crp mutation at approximately 67 min. In the crp mutant, 5'-nucleotidase and 3'-nucleotidase remain located in the periplasm. This mutant is also cryptic for alkaline phosphatase but not for acid hexose phosphatase. Treatment of cells with ethylenediamine-tetraacetate substantially alleviated crypticity. These data are discussed in terms of the organization of periplasmic enzymes and of the outer membrane as a permeability barrier.  相似文献   
18.
Axl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate. Iterative optimization of the initial lead compound (1) led to compound (21), a selective and potent inhibitor of wild-type Axl. Compound (21) will serve as a useful compound for further in vivo studies.  相似文献   
19.
Antizymes are key regulators of cellular polyamine metabolism that negatively regulate cell proliferation and are therefore regarded as tumor suppressors. Although the regulation of antizyme (Az) synthesis by polyamines and the ability of Az to regulate cellular polyamine levels suggest the centrality of polyamine metabolism to its antiproliferative function, recent studies have suggested that antizymes might also regulate cell proliferation by targeting to degradation proteins that do not belong to the cellular polyamine metabolic pathway. Using a co-degradation assay, we show here that, although they efficiently stimulated the degradation of ornithine decarboxylase (ODC), Az1 and Az2 did not affect or had a negligible effect on the degradation of cyclin D1, Aurora-A, and a p73 variant lacking the N-terminal transactivation domain whose degradation was reported recently to be stimulated by Az1. Furthermore, we demonstrate that, although Az1 and Az2 could not be constitutively expressed in transfected cells, they could be stably expressed in cells that express trypanosome ODC, a form of ODC that does not bind Az and therefore maintains a constant level of cellular polyamines. Taken together, our results clearly demonstrate that Az1 and Az2 affect cell proliferation and viability solely by modulating cellular polyamine metabolism.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号