首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   39篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2016年   2篇
  2015年   10篇
  2014年   16篇
  2013年   21篇
  2012年   19篇
  2011年   20篇
  2010年   16篇
  2009年   18篇
  2008年   32篇
  2007年   29篇
  2006年   34篇
  2005年   22篇
  2004年   28篇
  2003年   27篇
  2002年   17篇
  2001年   16篇
  2000年   25篇
  1999年   17篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   8篇
  1991年   10篇
  1990年   8篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   10篇
  1984年   4篇
  1983年   11篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   10篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1970年   3篇
  1969年   2篇
  1944年   1篇
排序方式: 共有548条查询结果,搜索用时 772 毫秒
421.
Salmonella develops into resident bacteria in epithelial cells, and the autophagic machinery (Atg) is thought to play an important role in this process. In this paper, we show that an autophagosome-like double-membrane structure surrounds the Salmonella still residing within the Salmonella-containing vacuole (SCV). This double membrane is defective in Atg9L1- and FAK family-interacting protein of 200 kDa (FIP200)-deficient cells. Atg9L1 and FIP200 are important for autophagy-specific recruitment of the phosphatidylinositol 3-kinase (PI3K) complex. However, in the absence of Atg9L1, FIP200, and the PI3K complex, LC3 and its E3-like enzyme, the Atg16L complex, are still recruited to Salmonella. We propose that the LC3 system is recruited through a mechanism that is independent of isolation membrane generation.  相似文献   
422.
Human interferon-β (hIFN-β) was used as a heterologous model protein to investigate the effects of the Bacillus subtilis AmyE propeptide and co-expression of PrsA in enhancing the secretion of heterologous proteins in B. subtilis. Secretion and activity of hIFN-β with AmyE propeptide increased by more than four-fold compared to that without AmyE propeptide. Moreover, under conditions of co-expressed PrsA, the secretion production and activity of hIFN-β with AmyE propeptide increased by more than 1.5-fold. AmyE propeptide and co-expression of PrsA thus have an additive effect on enhancing the production of the hIFN-β in B. subtilis.  相似文献   
423.
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium that can grow in media of up to 3.0 m NaCl and pH 11. Here, we show that in addition to a typical H(+)-ATP synthase, Aphanothece halophytica contains a putative F(1)F(0)-type Na(+)-ATP synthase (ApNa(+)-ATPase) operon (ApNa(+)-atp). The operon consists of nine genes organized in the order of putative subunits β, ε, I, hypothetical protein, a, c, b, α, and γ. Homologous operons could also be found in some cyanobacteria such as Synechococcus sp. PCC 7002 and Acaryochloris marina MBIC11017. The ApNa(+)-atp operon was isolated from the A. halophytica genome and transferred into an Escherichia coli mutant DK8 (Δatp) deficient in ATP synthase. The inverted membrane vesicles of E. coli DK8 expressing ApNa(+)-ATPase exhibited Na(+)-dependent ATP hydrolysis activity, which was inhibited by monensin and tributyltin chloride, but not by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The Na(+) ion protected the inhibition of ApNa(+)-ATPase by N,N'-dicyclohexylcarbodiimide. The ATP synthesis activity was also observed using the Na(+)-loaded inverted membrane vesicles. Expression of the ApNa(+)-atp operon in the heterologous cyanobacterium Synechococcus sp. PCC 7942 showed its localization in the cytoplasmic membrane fractions and increased tolerance to salt stress. These results indicate that A. halophytica has additional Na(+)-dependent F(1)F(0)-ATPase in the cytoplasmic membrane playing a potential role in salt-stress tolerance.  相似文献   
424.
Alkaline phosphatases (APases) are important enzymes in organophosphate utilization. Three prokaryotic APase gene families, PhoA, PhoX, and PhoD, are known; however, their functional characterization in cyanobacteria largely remains to be clarified. In this study, we cloned the phoD gene from a halotolerant cyanobacterium, Aphanothece halophytica (phoD(Ap)). The deduced protein, PhoD(Ap), contains Tat consensus motifs and a peptidase cleavage site at the N terminus. The PhoD(Ap) enzyme was activated by Ca(2+) and exhibited APase and phosphodiesterase (APDase) activities. Subcellular localization experiments revealed the secretion and processing of PhoD(Ap) in a transformed cyanobacterium. Expression of the phoD(Ap) gene in A. halophytica cells was upregulated not only by phosphorus (P) starvation but also under salt stress conditions. Our results suggest that A. halophytica cells possess a PhoD that participates in the assimilation of P under salinity stress.  相似文献   
425.
426.
Induced pluripotent stem (iPS) cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF)-derived iPS cells (253G1) and human adult corneal limbal epithelial cells (HLEC)-derived iPS cells (L1B41). We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA) differentiation method, as Pax6+/K12+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later) in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.  相似文献   
427.
Congenital scoliosis, a lateral curvature of the spine caused by vertebral defects, occurs in approximately 1 in 1,000 live births. Here we demonstrate that haploinsufficiency of Notch signaling pathway genes in humans can cause this congenital abnormality. We also show that in a mouse model, the combination of this genetic risk factor with an environmental condition (short-term gestational hypoxia) significantly increases the penetrance and severity of vertebral defects. We demonstrate that hypoxia disrupts FGF signaling, leading to a temporary failure of embryonic somitogenesis. Our results potentially provide a mechanism for the genesis of a host of common sporadic congenital abnormalities through gene-environment interaction.  相似文献   
428.

Mitochondrial division is mediated by the conserved dynamin-related GTPase DNM1L/DRP1. DNM1L assembles onto the surface of mitochondria and constricts this tubular organelle. Alterations in mitochondrial division are linked to many neurodegenerative diseases. However, the in vivo function of mitochondrial division is poorly understood. In our recent paper, we studied the physiological role of mitochondrial division in postmitotic neurons using the cre-loxP system. We found that the loss of DNM1L resulted in increased oxidative damage in mitochondria, impaired respiration and neurodegeneration in postmitotic neurons. Suggesting a decrease in mitochondrial turnover, mitophagy-related proteins such as LC3, SQSTM1/p62 and ubiqutin accumulated in division-defective mitochondria. These findings suggest that mitochondrial division functions as an important quality control mechanism that suppresses oxidative damage and neurodegeneration in vivo

  相似文献   
429.
Until recently, the role of the proteolytic system involving serine proteases in follicle rupture during ovulation in mammalian species has been a subject of controversy. We undertook the present study to examine whether proteases play a role in follicle rupture using the teleost medaka (Oryzias latipes) model. Various serine protease inhibitors, including a specific plasmin inhibitor, drastically reduced the rate of ovulation, as assessed by an in vitro ovulation assay, which was established for the fish. Biochemical, molecular biological, and immunological analyses demonstrated that plasminogen/plasmin was present in large follicles destined to ovulate. The active protease, plasmin, was detected in follicles approximately 3-7 h before the expected time of ovulation. Specific antibodies against the medaka plasmin light chain suppressed the ovulation rate of the follicles when antibodies were added to the medium during the period in which active plasmin was generated. This finding was an indication that a plasmin-like protease similar if not identical to plasmin plays a role in follicle rupture during ovulation in the medaka. Our data also indicate that this serine protease participates in the rupture for only a few hours prior to the activation of matrix metalloproteinase (Mmp)-mediated hydrolysis at ovulation. Based on our previous and current data, we propose a follicle rupture model involving two different proteolytic enzyme systems, serine protease and Mmp, in medaka ovulation. The current study is the first to provide evidence of the indispensable role of plasmin or a plasmin-like protease in the ovulation of a nonmammalian vertebrate species.  相似文献   
430.
Periodic formation of somites is controlled by the segmentation clock, where the oscillator Hes7 regulates cyclic expression of the Notch modulator Lunatic fringe. Here, we show that Hes7 also regulates cyclic expression of the Fgf signaling inhibitor Dusp4 and links Notch and Fgf oscillations in phase. Strikingly, inactivation of Notch signaling abolishes the propagation but allows the initiation of Hes7 oscillation. By contrast, transient inactivation of Fgf signaling abolishes the initiation, whereas sustained inactivation abolishes both the initiation and propagation of Hes7 oscillation. We thus propose that Hes7 oscillation is initiated by Fgf signaling and propagated/maintained anteriorly by Notch signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号