首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   93篇
  国内免费   2篇
  1702篇
  2023年   11篇
  2022年   25篇
  2021年   45篇
  2020年   21篇
  2019年   37篇
  2018年   41篇
  2017年   38篇
  2016年   48篇
  2015年   94篇
  2014年   79篇
  2013年   124篇
  2012年   140篇
  2011年   125篇
  2010年   71篇
  2009年   70篇
  2008年   86篇
  2007年   78篇
  2006年   80篇
  2005年   67篇
  2004年   61篇
  2003年   69篇
  2002年   52篇
  2001年   30篇
  2000年   30篇
  1999年   17篇
  1998年   8篇
  1997年   7篇
  1996年   5篇
  1994年   4篇
  1992年   12篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   8篇
  1976年   5篇
  1975年   3篇
  1974年   8篇
  1973年   9篇
  1971年   3篇
  1970年   3篇
  1965年   3篇
排序方式: 共有1702条查询结果,搜索用时 15 毫秒
121.
The work investigates on the potential of ten mangrove species for absorption, accumulation and partitioning of trace metal(loid)s in individual plant tissues (leaves, bark and root/pneumatophore) at two study sites of Indian Sundarban Wetland. The metal(loid) concentration in host sediments and their geochemical characteristics were also considered. Mangrove sediments showed unique potential in many- fold increase for most metal(loid)s than plant tissues due to their inherent physicochemical properties. The ranges of concentration of trace metal(loid)s for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in plant tissue were 0.006–0.31, 0.02–2.97, 0.10–4.80, 0.13–6.49, 4.46–48.30, 9.2–938.1, 0.02–0.13, 9.8–1726, 11–5.41, 0.04–7.64, 3.81–52.20 μg g ?1respectively. The bio- concentration factor (BCF) showed its maximum value (15.5) in Excoecaria agallocha for Cd, suggesting that it can be considered as a high-efficient plant for heavy metal bioaccumulation. Among all metals, Cd and Zn were highly bioaccumulated in E. agallocha (2.97 and 52.2 μg g ?1 respectively. Our findings suggest that the species may be classified as efficient metal trap for Cd in aerial parts, as indicated by higher metal accumulation in the leaves combined with BCF and translocation factor (TF) values.  相似文献   
122.
A 59-year-old man was diagnosed with urothelial carcinoma involving an isolated cerebellar metastasis after presenting to the emergency department for headache complaints. After selective surgical excision of the symptomatic brain lesion and delayed cystectomy due to intractable hematuria, he survived 11 years without evidence of recurrence or subsequent systemic chemotherapy. He eventually expired after delayed recurrence in the lung, supraclavicular lymph node, and brain. To our knowledge, this is the only case of prolonged survival from urothelial carcinoma after selective surgical extirpation of the primary and metastatic lesion without subsequent systemic chemotherapy.Key words: Bladder cancer, Cystectomy, Metastasis, Urothelial carcinomaUsually, brain metastasis of bladder urothelial carcinoma is associated with widespread systemic disease and/or multiple brain lesions. It is exceedingly rare to have bladder cancer metastasize to the brain without evidence of additional systemic manifestations.1 As with other forms of distant urothelial carcinoma metastasis, brain metastasis is associated with poor prognosis, with survival often less than 14 months in those with solitary brain lesions.2 We report an isolated bladder urothelial carcinoma metastasis to the cerebellum with an 11-year survival fol-lowing extirpative therapy of both the primary lesion and brain metastasis.  相似文献   
123.
A significant proportion of men diagnosed with prostate cancer (PCa) eventually develop metastatic disease, which progresses to castration resistance, despite initial response to androgen deprivation. As anticancer therapy has become increasingly effective, acquired drug resistance has emerged, limiting efficacy. Combination treatment, utilizing different drug classes, exemplifies a possible strategy to foil resistance development. The effects of the triple application of the histone deacetylase (HDAC) inhibitor valproic acid (VPA), the mammalian target of rapamycin inhibitor everolimus and low dosed interferon alpha (IFNα) on PCa cell growth and dissemination capacity were investigated. For that purpose, the human PCa cell lines, PC‐3, DU‐145 and LNCaP were treated with the combined regimen or separate single agents. Cell growth was investigated by the MTT dye reduction assay. Flow cytometry served to analyse cell cycle progression. Adhesion to vascular endothelium or immobilized collagen, fibronectin and laminin was quantified. Migration and invasion characteristics were determined by the modified Boyden chamber assay. Integrin α and β subtypes were investigated by flow cytometry, western blotting and RT‐PCR. Integrin related signalling, Epidermal Growth Factor Receptor (EGFr), Akt, p70S6kinase and extracellular signal‐regulated kinases (ERK)1/2 activation were also assessed. The triple application of VPA, everolimus and low dosed IFNα blocked tumour cell growth and dissemination significantly better than any agent alone. Antitumour effects were associated with pronounced alteration in the cell cycle machinery, intracellular signalling and integrin expression profile. Combining VPA, everolimus and low dosed IFNα might be a promising option to counteract resistance development and improve outcome in PCa patients.  相似文献   
124.
Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria. They not only represent a potential platform for development of novel vaccines but also provide a tool for efficient adjuvant and antigen delivery system. In the present study, we investigated the interaction between BGs of Escherichia coli (E. coli) and bovine monocyte-derived dendritic cells (MoDCs). MoDCs are highly potent antigen-presenting cells and have the potential to act as a powerful tool for manipulating the immune system. We generated bovine MoDCs in vitro from blood monocytes using E. coli expressed bovine GM-CSF and IL-4 cytokines. These MoDCs displayed typical morphology and functions similar to DCs. We further investigated the E. coli BGs to induce maturation of bovine MoDCs in comparison to E. coli lipopolysaccharide (LPS). We observed the maturation marker molecules such as MHC-II, CD80 and CD86 were induced early and at higher levels in BG stimulated MoDCs as compared to the LPS stimulated MoDCs. BG mediated stimulation induced significantly higher levels of cytokine expression in bovine MoDCs than LPS. Both pro-inflammatory (IL-12 and TNF-α) and anti-inflammatory (IL-10) cytokines were induced in MoDCs after BGs stimulation. We further analysed the effects of BGs on the bovine MoDCs in an allogenic mixed lymphocyte reaction (MLR). We found the BG-treated bovine MoDCs had significantly (p<0.05) higher capacity to stimulate allogenic T cell proliferation in MLR as compared to the LPS. Taken together, these findings demonstrate the E. coli BGs induce a strong activation and maturation of bovine MoDCs.  相似文献   
125.
Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 μM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.  相似文献   
126.
Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB) of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine. The pathophysiology of podocytopathies makes podocytes a potential and challenging target for nanomedicine development, though there is a lack of known molecular targets for cell selective drug delivery. To identify VCAM-1 as a cell-surface receptor that is suitable for binding and internalization of nanomedicine carrier systems by podocytes, we investigated its expression in the immortalized podocyte cell lines AB8/13 and MPC-5, and in primary podocytes. Gene and protein expression analyses revealed that VCAM-1 expression is increased by podocytes upon TNFα-activation for up to 24 h. This was paralleled by anti-VCAM-1 antibody binding to the TNFα-activated cells, which can be employed as a ligand to facilitate the uptake of nanocarriers under inflammatory conditions. Hence, we next explored the possibilities of using VCAM-1 as a cell-surface receptor to deliver the potent immunosuppressant rapamycin to TNFα-activated podocytes using the lipid-based nanocarrier system Saint-O-Somes. Anti-VCAM-1-rapamycin-SAINT-O-Somes more effectively inhibited the cell migration of AB8/13 cells than free rapamycin and non-targeted rapamycin-SAINT-O-Somes indicating the potential of VCAM-1 targeted drug delivery to podocytes.  相似文献   
127.

Background

Screening for type 2 diabetes (T2DM) and individuals at risk of diabetes has been advocated, yet information on the response rate and diagnostic yield of different screening strategies are lacking.

Methods

Studies (from 1998 to March/2015) were identified through Medline, Embase and the Cochrane library and included if they used oral glucose tolerance test (OGTT) and WHO-1998 diagnostic criteria for screening in a community setting. Studies were one-step strategy if participants were invited directly for OGTT and two, three/four step if participants were screened at one or more levels prior to invitation to OGTT. The response rate and diagnostic yield were pooled using Bayesian random-effect meta-analyses.

Findings

47 studies (422754 participants); 29 one-step, 11 two-step and seven three/four-step were identified. Pooled response rate (95% Credible Interval) for invitation to OGTT was 65.5% (53.7, 75.6), 63.1% (44.0, 76.8), and 85.4% (76.4, 93.3) in one, two and three/four-step studies respectively. T2DM yield was 6.6% (5.3, 7.8), 13.1% (4.3, 30.9) and 27.9% (8.6, 66.3) for one, two and three/four-step strategies respectively. The number needed to invite to the OGTT to detect one case of T2DM was 15, 7.6 and 3.6 in one, two, and three/four-step strategies. In two step strategies, there was no difference between the response or yield rates whether the first step was blood test or risk-score. There was evidence of substantial heterogeneity in rates across study populations but this was not explained by the method of invitation, study location (rural versus urban) and developmental index of the country in which the study was performed.

Conclusions

Irrespective of the invitation method, developmental status of the countries and or rural/urban location, using a multi-step strategy increases the initial response rate to the invitation to screening for diabetes and reduces the number needed to have the final diagnostic test (OGTT in this study) for a definite diagnosis.  相似文献   
128.
Neurofibromatosis type 2 is an inherited autosomal disorder caused by biallelic inactivation of the NF2 tumor suppressor gene. The NF2 gene encodes a 70-kDa protein, merlin, which is a member of the ezrin-radixin-moesin (ERM) family. ERM proteins are believed to be regulated by a transition between a closed conformation, formed by binding of their N-terminal FERM domain and C-terminal tail domain (CTD), and an open conformation, in which the two domains do not interact. Previous work suggests that the tumor suppressor function of merlin is similarly regulated and that only the closed form is active. Therefore, understanding the mechanisms that control its conformation is crucial. We have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer, both as purified protein and in live cells. Using these tools, we find that merlin exists predominately as a monomer in a stable, closed conformation that is mediated by the central α-helical domain. The contribution from the FERM-CTD interaction to the closed conformation appears to be less important. Upon phosphorylation or interaction with an effector protein, merlin undergoes a subtle conformational change, suggesting a novel mechanism that modulates the interaction between the FERM domain and the CTD.Neurofibromatosis type 2 is an inherited autosomal disorder that is characterized by bilateral schwannomas of the eighth cranial nerve. The tumor suppressor gene responsible for this disorder, NF2, was cloned in 1993 (45). Biallelic inactivation of the NF2 gene is also seen in spontaneous schwannoma, meningioma, and malignant mesothelioma (22). In mouse models, deletion of the Nf2 gene is embryonic lethal, indicating an essential role for NF2 in development (24). Heterozygous mice develop a variety of aggressive metastatic tumors that have lost the wild-type allele (23). Targeted deletion of the Nf2 gene in Schwann cells leads to schwannoma formation (7). In vitro, Nf2-null cells grow to significantly higher densities (31), suggesting that contact inhibition of growth is impaired in these cells and that mediation of growth arrest at high cell density may be the basis for the tumor suppressor function of the NF2 gene. In normal fibroblasts, merlin is inactive as a growth suppressor in subconfluent cells, becoming activated as they approach confluence, thereby effecting contact inhibition of growth (26).The NF2 gene encodes a 70-kDa protein called merlin (for moesin, ezrin, radixin-like protein), which shares significant homology with members of the ezrin-radixin-moesin (ERM) branch of the Band 4.1 superfamily (45). The domain structure of merlin, also shared with other ERM proteins, consists of an N-terminal FERM domain, followed by a central α-helical region (CH) and a C-terminal tail domain (CTD). The merlin FERM domain has relatively high sequence similarity with other ERM family members, a 60 to 70% identity over the first 300 amino acids. The CH domain and the CTD show much lower identity (28 to 36%); however, the α-helical character of the CH domain is preserved, as is the heptad repeat pattern typical of α-helices that form coiled coils (46).The critical point of regulation of all the ERM proteins is a high-affinity intramolecular interaction between the C-terminal domain and the FERM domain (4) (Fig. (Fig.1).1). The FERM domain folds into a three-lobed cloverleaf structure that acts as a multifaceted docking site for protein binding partners (16, 39). The CTD, consisting of four major and two minor helices and a beta sheet, binds to the FERM domain by extending across the face of the F2 and F3 lobes (32). This intramolecular head-to-tail binding results in a “closed” conformation, with the C-terminal domain covering much of the surface of the FERM domain (32, 44). For ezrin, radixin and moesin, the CTD functions as a mask, blocking access of effector molecules, such as the cell surface receptors CD44 and ICAM2 and adaptor molecules, like EBP50/NHERF, to sites on the surface of the FERM domain (11, 25, 44). The interaction between the CTD and FERM domain is regulated by phosphatidyl inositol-(4,5)-bisphosphate (PIP2) binding to the FERM domain and by phosphorylation of a critical residue in the CTD (3, 6, 10, 49). This residue, threonine 567 in ezrin, is conserved throughout the ERM family (21). Phosphorylation introduces a negative charge and a bulky side group that effectively reduces the affinity of the interaction, releasing the CTD from the FERM domain and causing a transition to an open conformation. Low-angle rotary shadowing electron microscopy (13) and biochemical studies (12) of purified radixin suggest that in the open conformation it is an extended filamentous structure with globular N and C termini that is greater than 240 Å in length. Signal transduction systems, such as the epidermal growth factor and Rho A pathways, induce phosphorylation of ERM proteins at the conserved C-terminal threonine via a number of kinases, including Rho kinase and protein kinase Cα (21, 28). Thus, conformational regulation of ERM proteins can be a point of integration of ERM activity with signal transduction pathways. The overall concept of ERM regulation, then, is centered upon a transition between an inactive, closed conformation that is mediated by the FERM-CTD interaction and an active, open conformation that is regulated by phosphorylation. In these two states, ERM proteins likely interact with different sets of binding partners, resulting in distinct functional outcomes.Open in a separate windowFIG. 1.ERM tertiary structure as represented by the crystal structure of full-length Sf-moesin (20), but with the merlin amino acid sequence substituted for Sf-moesin. Approximate boundary amino acid residues for all domains appear at the top of the figure. Each domain is assigned a different color. The ERM structure consists of an N-terminal FERM domain folded into three lobes, F1, F2, and F3. This is followed by a central α-helical domain containing three subhelices (αA, αB, and αC) and a CTD with four short helices. An ERM protein is thought to have an open conformation, an extended structure with the FERM domain and the CTD separated by the α-helical domain, that is more than 240 Å long. In the closed conformation, the α-helical domain bends at the αA-αB junction and again at the αB-αC junction, causing the CTD to be positioned over F2 and F3 of the FERM domain. More than half of the surface of the FERM domain is masked by interaction with the CTD, αA, and parts of αB and αC.Like the classical ERMs, merlin is also thought to be regulated by changes in conformation. The FERM domain and the CTD of merlin interact with each other, albeit at a lower level of affinity than the ezrin FERM domain and the CTD (29). There are important differences, however, between merlin and the other ERM proteins. First, phosphorylation of the conserved C-tail threonine T576 has not been reported to occur in mammalian merlin, and nonphosphorylatable and phosphomimetic substitutions at this site have no effect on merlin activity (42). Instead, merlin is phosphorylated at serine 518 in the CTD, a target of the p21-activated kinase PAK and protein kinase A (1, 18, 47). The growth-suppressive function of merlin is activated by dephosphorylation of S518 by the phosphatase PP1δ in a density-dependent manner (14). Second, it was reported in a study using FERM domain and CTD truncates of merlin that only cotransfection of both the N-and C-terminal halves resulted in growth suppression (38). Together, these observations suggested a model of inactive, phosphorylated merlin in an open conformation that, upon cell-to-cell contact, is dephosphorylated and transitions to a closed, growth suppressive conformation.The existing model for conformational regulation described above is inferred from indirect data and assays that generally measure the interaction of isolated FERM and CTD truncates rather than full-length molecules (9, 29, 38). It has been impossible to test directly because tools have not been available to specifically assay for either the open or the closed form of merlin. Therefore, we have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer (FRET), both as purified protein and in live cells. Using these tools, we show that merlin exists predominately as a monomer in a stable, largely closed conformation. Additionally, we find that the closed conformation is largely mediated by the central α-helical domain; the contribution of the FERM-CTD interaction appears to be less significant than previously thought. Finally, we find that phosphorylation and protein interaction cause unexpectedly small changes in merlin conformation. We propose a new and more refined model for merlin regulation, in which merlin function is regulated by specific but subtle conformational changes that modulate the interaction between the FERM domain and the CTD.  相似文献   
129.
We describe a selective and a highly sensitive high-performance liquid chromatography–electron spray ionization-collision induced dissociation-tandem mass spectrometry (HPLC–ESI-CID-MS/MS) assay for the Aurora A kinase inhibitor MLN8237 in human plasma. The intra-day precision based on the standard deviation of replicates of quality control samples ranged from 0.2 to 4% and with accuracy ranging from 96 to 102%. The inter-day precision ranged from 0.5 to 7% and the accuracy ranged from 93 to 105%. Stability studies showed that MLN8237 was stable both during the expected conditions for sample preparation and storage. The lower limit of quantification for MLN8237 was 5 ng/mL. The analytical method showed excellent sensitivity, precision, and accuracy. This method is robust and is being successfully employed in a Children's Oncology Group Phase 1 Consortium study of MLN8237 in children with cancer.  相似文献   
130.
Forty weaned male guinea pigs (Cavia porcellus) of 152.6?±?7.96 g mean body weight were divided into four equal groups and fed a common basal diet comprised of 25% ground cowpea (Vigna unguiculata) hay, 30% ground maize (Zea mays) grain, 22% ground gram (Cicer arietinum) grain, 9.5% deoiled rice (Oryza sativa) bran, 6% soybean (Glycine max) meal, 6% fish meal, 1.5% mineral mixture (without Se), and ascorbic acid at 200 mg/kg to meet their nutrient requirements along with 0, 0.1, 0.2, and 0.3 ppm of organic selenium (Se) in groups I, II, III, and IV, respectively. Experimental feeding lasted for a period of 10 weeks, during which, daily feed intake and weekly body weights were recorded. Intake and digestibility of dry matter, organic matter, ether extract, crude fiber, and nitrogen-free extract as well as uptake of calcium and phosphorus were similar (P?>?0.05) among the four groups. Feed:gain ratio was also similar (P?>?0.05) in the four groups. However, digestibility of crude protein was significantly (P?<?0.001) higher in group II supplemented with 0.1 ppm organic Se as compared to other three group. Intake and absorption of Se was significantly (P?<?0.001) higher in all the Se supplemented groups as compared to control group. Average daily gain (ADG) was significantly (P?<?0.05) higher in group II (3.16 g/day) and III (3.38 g/day) as compared to group I (2.88 g/day). However, ADG in group IV (supplemented 0.3 ppm organic Se) was significantly (P?<?0.05) lower (2.83 g/day) than group II and III, but comparable (P?>?0.05) to group I. Findings of the present experiment suggests that Se requirements of guinea pigs are ≥0.2 ppm, as supplementation of 0.1 ppm organic Se in the diet (having 0.1 ppm Se) not only enhanced their growth rate but also improved the protein utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号