首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   4篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   10篇
  2012年   14篇
  2011年   12篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有145条查询结果,搜索用时 968 毫秒
11.
Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.  相似文献   
12.
The aim of this study was to formulate and characterize Eudragit® L100 and Eudragit® L100-poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing diclofenac sodium. Diclofenac generates severe adverse effects with risks of toxicity. Thus, nanoparticles were prepared to reduce these drawbacks in the present study. These nanoparticles were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, and in vitro drug release in pH 6.8. The prepared nanoparticles were almost spherical in shape, as determined by atomic force microscopy. The nanoparticles with varied size (241–274 nm) and 25.8–62% of entrapment efficiency were obtained. The nanoparticles formulations produced the release profiles with an initial burst effect in which diclofenac sodium release ranged between 38% and 47% within 4 h. The extent of drug release from Eudragit® L100 nanoparticles was up to 92% at 12 h. However, Eudragit®/PLGA nanoparticles showed an initial burst release followed by a slower sustained release. The cumulative release at 72 h was 56%, 69%, and 81% for Eudragit®/PLGA (20:80), Eudragit®/PLGA (30:70) and Eudragit®/PLGA (50:50) nanoparticles, respectively. The release profiles and encapsulation efficiencies depended on the amount of Eudragit in the blend. These data demonstrated the efficacy of these nanoparticles in sustaining the diclofenac sodium release profile.  相似文献   
13.
CTnDOT is a Bacteroides conjugative transposon (CTn) that has facilitated the spread of antibiotic resistances among bacteria in the human gut in recent years. Although the integrase encoded by CTnDOT (IntDOT) carries the C-terminal set of conserved amino acids that is characteristic of the tyrosine family of recombinases, the reaction it catalyzes involves a novel step that creates a short region of heterology at the joined ends of the element during recombination. Also, in contrast to tyrosine recombinases, IntDOT catalyzes a reaction that is not site specific. To determine what types of contacts IntDOT makes with the DNA during excision and integration, we first developed an agarose gel-based assay for CTnDOT recombination, which facilitated the purification of the native IntDOT protein. The partially purified IntDOT was then used for DNase I footprinting analysis of the integration site attDOT and the excision sites attL and attR. Our results indicate that CTnDOT has five or six arm sites that are likely to be involved in forming higher-order nucleoprotein complexes necessary for synapsis. In addition, there are four core sites that flank the sites of strand exchange during recombination. Thus, despite the fact that the reaction catalyzed by IntDOT appears to be different from that typically catalyzed by tyrosine recombinases, the protein-DNA interactions required for higher-order structures and recombination appear to be similar.  相似文献   
14.
Effects of the antioxidant system and chlorophyll fluorescence on drought tolerance of four common bean (Phaseolus vulgaris L.) cultivars were studied. The cultivars were positioned in the order of a decrease in their drought tolerance: Yakutiye, Pinto Villa, Ozayse, and Zulbiye on the basis of changes in the water potential, stomatal conductance, photosynthetic pigment content, and lipid peroxidation. Under drought conditions, the level of H2O2 was not changed in cv. Pinto Villa but decreased in other cultivars. Antioxidant enzymes (superothide dismutase (SOD), guaiacol peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)) were generally activated in all cultivars. Interestingly, CAT, APX, and GR activities were not changed in cv. Pinto Villa, APX activity decreased in cv. Yakutiye, and CAT activity was not changed in cv. Zulbiye. The increases in SOD and GPX activities in cv. Ozayse were higher than in other cultivars. Drought stress reduced the effective quantum yield of PS2 (ΦPS2) and the photochemical quenching (qp), while it increased nonphotochemical quenching (NPQ) in all cultivars. The reduction or increase was more pronounced in cv. Zulbiye. There were generally significant correlations between qp, NPQ, and ROS scavenging by SOD and APX. Also, there were significant correlations between SOD and qp in tolerant cultivars and APX and qp in sensitive ones. The results indicate that activation of SOD and APX was closely related to the efficiency of PS2 in common bean cultivars. This interaction was essential for protection of photosystems and plant survival under drought.  相似文献   
15.
Carcinogenesis may involve overproduction of oxygen-derived species including free radicals, which are capable of damaging DNA and other biomolecules in vivo. Increased DNA damage contributes to genetic instability and promote the development of malignancy. We hypothesized that the repair of oxidatively induced DNA base damage may be modulated in colorectal malignant tumors, resulting in lower levels of DNA base lesions than in surrounding pathologically normal tissues. To test this hypothesis, we investigated oxidatively induced DNA damage in cancerous tissues and their surrounding normal tissues of patients with colorectal cancer. The levels of oxidatively induced DNA lesions such as 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine and (5'S)-8,5'-cyclo-2'-deoxyadenosine were measured by gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution tandem mass spectrometry. We found that the levels of these DNA lesions were significantly lower in cancerous colorectal tissues than those in surrounding non-cancerous tissues. In addition, the level of DNA lesions varied between colon and rectum tissues, being lower in the former than in the latter. The results strongly suggest upregulation of DNA repair in malignant colorectal tumors that may contribute to the resistance to therapeutic agents affecting the disease outcome and patient survival. The type of DNA base lesions identified in this work suggests the upregulation of both base excision and nucleotide excision pathways. Development of DNA repair inhibitors targeting both repair pathways may be considered for selective killing of malignant tumors in colorectal cancer.  相似文献   
16.
17.
The glutathione S-transferase (GST) supergene family is an important part of cellular enzyme defense against endogenous and exogenous chemicals, many of which have carcinogenic potential. The present investigation was conducted to detect a possible association between polymorphisms at the GSTM1, GSTT1, and GSTP1 genes and the interaction with cigarette smoking and colorectal cancer incidence. We examined 181 patients with colorectal cancer and 204 controls. DNA was extracted from whole blood, and the GSTM1, GSTT1, and GSTP1 polymorphisms were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler instrument. Associations between specific genotypes and the development of colorectal cancer were examined by use of logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI). The GSTM1 polymorphism was associated with an increased risk of developing colorectal cancer (OR = 1.62, 95% CI: 1.06–2.46). Also the risk of colorectal cancer associated with the GSTT1 null genotype was 1.64 (95% CI: 1.10–2.59). Statistically no differences were found between patients with colorectal cancer and control groups for the GSTP1 Ile/Ile, Ile/Val and Val/Val genotypes. In addition, the frequencies of the GSTM1 and GSTT1 deletion genotypes differed significantly between the cases and controls for current smokers; the GSTT1 null genotype especially is associated with a greater risk of colorectal cancer (OR = 2.44, 95% CI: 1.24–4.81). The GSTM1 and GSTT1 deletions were associated with an increased risk of developing a transverse or rectal tumor (OR = 1.86, 95% CI: 1.15–3.00; OR = 1.70, 95% CI: 1.02–2.84; respectively). The glutathione S-transferase polymorphisms were not associated with risk in patients stratified by age. The risk of colorectal cancer increased as putative high-risk genotypes increased for the combined genotypes of GSTM1 null, GSTT1 null, and either GSTP1 valine heterozygosity or GSTP1 valine homozygosity (OR = 2.69, 95% CI: 1.02–7.11). In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to different GST polymorphic enzymes are predisposing for colorectal cancer.  相似文献   
18.
Toluene is used widely, not only in industry, but also in households where toluene exposure and abuse can occur. To estimate the genotoxic risk of toluene exposure, DNA damage was determined in peripheral lymphocytes of 20 glue sniffers and 20 age-matched controls by use of the alkaline comet assay. Urinary hippuric acid and o-cresol excretion rates, which are used as a marker for toluene exposure, were also measured in sniffers and compared with historical control values. The increase in genetic damage in sniffers was statistically significant as compared to control subjects (P<0.0001). The mean values of the hippuric acid and o-cresol excretion rate for glue sniffers was 73- and 1582-fold higher, respectively, than in controls and confirms the putative exposure. Education of the general public and efforts to keep adolescents away from volatile solvent-based products, which may lead to a desire of sniffing in the future, would be advisable.  相似文献   
19.
The acetylation polymorphism is a common inherited variation in human drug and carcinogen metabolism. Because N- acetyltransferase (NAT2) is important for the detoxification and/or bioactivation of drugs and carcinogens, polymorphisms of this gene have important implications in therapeutics of and susceptibility to cancer. In this study, NAT2 genotype (NAT2*5A (C(481)T), NAT2*6A (G(590)A), NAT2*7A/B (G(857)A)) and NAT2*14A (G(191)A) and phenotype were determined in 125 patients with colorectal carcinoma and 82 healthy control in Mersin, a city located in the southern region of Turkey. Isolation of the subjects' DNA was performed by using a highly purified PCR template preparation kit/(Roche Diagnostics cat. no: 1 796 828) and the NAT2 polymorphism was detected using real-time PCR (Roche Diagnostics, GmbH, Mannheim, Germany). According to this study high protein intake is associated with the increased risk for the development of colon cancer (OR = 1.73; 95% CI, 1.10-3.07). Although only NAT2*14A fast type was associated with increased risk in patients with colorectal carcinoma (OR = 3.03; 95% CI, 1.56-5.86), when a high protein diet was considered, NAT2*7A/B fast genotype was also found to be associated with an increased risk (OR = 2.06, 95% CI for NAT2*7A/B, 1.10-3.86; OR = 2.65; 95% CI, 1.29-5.46 for NAT2*14A). Smoking status did not differ between the control and patient groups. Our data suggest that exposure to carcinogens through consumption of a high-protein diet may increase the risk of colorectal carcinoma only in genetically-susceptible individuals.  相似文献   
20.
Heme oxygenases (HO) degrade heme yielding iron, carbon monoxide and one of four possible biliverdin (BV) isomers. Pseudomonas aeruginosa PAO1 is thus far the only organism to contain two HOs with different regiospecificities: BphO and PigA. While BphO cleaves heme to exclusively yield BV IXα, PigA produces the BV isomers IXβ and IXδ. We bioinformatically identified putative HOs in diverse Pseudomonas strains, tested their enzymatic functionality and determined their regiospecificity. Surprisingly, even high amino acid sequence identities to the P. aeruginosa HOs were not sufficient to correctly predict the HO regiospecificity in all cases. Based on our results, Pseudomonas strains differ in their HO composition containing either BphO or PigA or both HO types. Concomitantly with the existence of bphO is the occurrence of at least one gene encoding a bacterial phytochrome implying that only BV IXα is the sufficient phytochrome chromophore. In contrast, pigA genes are organized in gene clusters associated with iron utilization implying a role of PigA in iron acquisition. However, at least in strains containing no PigA this function maybe fulfilled by BphO. Only a combination of homology searches and analyses of genetic environments is appropriate for a reliable prediction of the regiospecificity of Pseudomonas HOs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号