首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2282篇
  免费   115篇
  国内免费   11篇
  2408篇
  2024年   7篇
  2023年   47篇
  2022年   41篇
  2021年   64篇
  2020年   46篇
  2019年   45篇
  2018年   90篇
  2017年   74篇
  2016年   103篇
  2015年   70篇
  2014年   108篇
  2013年   173篇
  2012年   135篇
  2011年   173篇
  2010年   101篇
  2009年   77篇
  2008年   107篇
  2007年   99篇
  2006年   100篇
  2005年   120篇
  2004年   121篇
  2003年   139篇
  2002年   70篇
  2001年   63篇
  2000年   61篇
  1999年   49篇
  1998年   9篇
  1997年   15篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1988年   12篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1966年   2篇
  1965年   2篇
排序方式: 共有2408条查询结果,搜索用时 15 毫秒
991.
This work concerns efficient and reliable numerical simulations of the dynamic behaviour of a moving-boundary model for tubulin-driven axonal growth. The model is nonlinear and consists of a coupled set of a partial differential equation (PDE) and two ordinary differential equations. The PDE is defined on a computational domain with a moving boundary, which is part of the solution. Numerical simulations based on standard explicit time-stepping methods are too time consuming due to the small time steps required for numerical stability. On the other hand standard implicit schemes are too complex due to the nonlinear equations that needs to be solved in each step. Instead, we propose to use the Peaceman–Rachford splitting scheme combined with temporal and spatial scalings of the model. Simulations based on this scheme have shown to be efficient, accurate, and reliable which makes it possible to evaluate the model, e.g. its dependency on biological and physical model parameters. These evaluations show among other things that the initial axon growth is very fast, that the active transport is the dominant reason over diffusion for the growth velocity, and that the polymerization rate in the growth cone does not affect the final axon length.  相似文献   
992.
993.
The Devils Hole pupfish (Cyprinodon diabolis; DHP) is an icon of conservation biology. Isolated in a 50 m2 pool (Devils Hole), DHP is one of the rarest vertebrate species known and an evolutionary anomaly, having survived in complete isolation for thousands of years. However, recent findings suggest DHP might be younger than commonly thought, potentially introduced to Devils Hole by humans in the past thousand years. As a result, the significance of DHP from an evolutionary and conservation perspective has been questioned. Here we present a high‐resolution genomic analysis of DHP and two closely related species, with the goal of thoroughly examining the temporal divergence of DHP. To this end, we inferred the evolutionary history of DHP from multiple random genomic subsets and evaluated four historical scenarios using the multispecies coalescent. Our results provide substantial information regarding the evolutionary history of DHP. Genomic patterns of secondary contact present strong evidence that DHP were isolated in Devils Hole prior to 20–10 ka and the model best supported by geological history and known mutation rates predicts DHP diverged around 60 ka, approximately the same time Devils Hole opened to the surface. We make the novel prediction that DHP colonized and have survived in Devils Hole since the cavern opened, and the two events (colonization and collapse of the cavern's roof) were caused by a common geologic event. Our results emphasize the power of evolutionary theory as a predictive framework and reaffirm DHP as an important evolutionary novelty, worthy of continued conservation and exploration.  相似文献   
994.
995.
In this study the dosimetric properties of alumina (Al2O3) substrates found in resistors retrieved from mobile phones were investigated. Measurements of the decline of optically stimulated luminescence (OSL) generated following exposure of these substrates to ionising radiation showed that 16% of the signal could still be detected after 2 years (735 days). Further, the magnitude of the regenerative dose (calibration dose; D i) had no impact on the accuracy of dose estimates. Therefore, it is recommended that the D i be set as low as is practicable, so as to accelerate data retrieval. The critical dose, D CL, and dose limit of detection, D DL, taking into account the uncertainty in the dose–response relation as well as the uncertainty in the background signal, was estimated to be 7 and 13 mGy, respectively, 1 h after exposure. It is concluded that given the significant long-term component of fading, an absorbed dose of 0.5 Gy might still be detectable up to 6 years after the exposure. Thus, OSL from alumina substrates can be used for dosimetry for time periods far in excess of those previously thought.  相似文献   
996.
In this paper we examine how a large array of neurons, and their associated neural circuitry, may determine known receptive field profile types and some well-known visual phenomena including Mach bands, edge enhancement, and visual masking of one signal by another. The neural model has a spatio-temporal structure and is described by a nonlinear integropartial differential difference equation with an isotropic Gabor kernel — a Gaussian apertured cosine modulation. Several simulations are presented.This project was partially funded by Grants A4345 to M. N. Ouztöreli and A2568 to T. M. Caelli from the Natural Sciences and Engineering Research Council of Canada through the University of Alberta  相似文献   
997.
998.

Background

Alpha-synuclein (asyn) has been shown to play an important role in the neuropathology of Parkinson’s disease (PD). In the diseased brain, classic intraneuronal inclusions called Lewy bodies contain abnormal formations of asyn protein which is mostly phosphorylated at serine 129 (pS129 asyn). This suggests that post-translational modifications may play a role in the pathogenic process. To date, several uniplex assays have been developed in order to quantify asyn not only in the brain but also in cerebrospinal fluid and blood samples in order to correlate asyn levels to disease severity and progression. Notably, only four assays have been established to measure pS129 asyn specifically and none provide simultaneous readout of the total and pS129 species. Therefore, we developed a sensitive high-throughput duplex assay quantifying total and pS129 human asyn (h-asyn) in the same well hence improving accuracy as well as saving time, consumables and samples.

Results

Using our newly established duplex assay we measured total and pS129 h-asyn in vitro showing that polo-like kinase 2 (PLK2) can phosphorylate asyn up to 41 % in HEK293 cells and in vivo the same kinase phosphorylated h-asyn up to 17 % in rat ventral midbrain neurons. Interestingly, no increase in phosphorylation was observed when PLK2 and h-asyn were co-expressed in rat striatal neurons. Furthermore, using this assay we investigated h-asyn levels in brain tissue samples from patients with PD as well as PD dementia and found significant differences in pS129 h-asyn levels not only between disease tissue and healthy control samples but also between the two distinct disease states especially in hippocampal tissue samples.

Conclusions

These results demonstrate that our duplex assay for simultaneous quantification is a useful tool to study h-asyn phosphorylation events in biospecimens and will be helpful in studies investigating the precise causative link between post-translational modification of h-asyn and PD pathology.
  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号