首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   39篇
  国内免费   5篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   7篇
  2019年   15篇
  2018年   10篇
  2017年   13篇
  2016年   13篇
  2015年   23篇
  2014年   21篇
  2013年   20篇
  2012年   18篇
  2011年   33篇
  2010年   20篇
  2009年   17篇
  2008年   14篇
  2007年   18篇
  2006年   20篇
  2005年   14篇
  2004年   13篇
  2003年   6篇
  2002年   2篇
  2001年   7篇
  2000年   9篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有377条查询结果,搜索用时 171 毫秒
111.
112.
An efficient protocol of shoot organogenesis and plant regeneration from internode derived callus has been developed for Capsicum annuum. Optimal callus was developed from internodal segments on Murashige and Skoog (MS) medium supplemented with 10 μM 2,4-dichlorophenoxy acetic acid (2,4-D) and 2.0 μM 6-benzyladenine (BA). Shoot differentiation was achieved from the surface of callus when transferred on shoot induction medium containing BA and thidiazuron (TDZ) alone or in combination. The highest number of de novo adventitious shoots (25.4?±?1.42) and shoot length (4.6?±?0.37 cm) was recorded on MS medium supplemented with 5.0 μM BA and 2.5 μM TDZ. The individual elongated shoots were rooted well on MS medium supplemented with 1.0 μM Indole-3-butyric acid (IBA). The in vitro raised plantlets with properly developed shoot and roots were acclimatized successfully and grew well in the greenhouse. All the regenerated plants appeared normal with respect to morphology and growth characteristics with 85% survival rate.  相似文献   
113.
114.

Heat stress (HS) seriously affects crop growth, causing significant crop yield losses worldwide. The regulatory mechanisms controlling HS tolerance in plants are not well understood. Phytohormones are important molecules for coordinating myriad of phenomena related to plant growth and development. They are also essential endogenous signaling molecules that actively mediate numerous physiological responses under abiotic stress by triggering stress-responsive regulatory genes involved in plant growth. This review updates the central role of various phytohormones—indole acetic acid, gibberellic acid, abscisic acid, cytokinins, ethylene, salicylic acid, brassinosteroids, strigolactone, and jasmonic acid—in regulating the HS response so that plants can adapt to increasing temperature stress. We also reveal how these stress-responsive phytohormones switch on various regulatory gene(s) and genes encoding antioxidants and heat shock proteins (HSPs) to combat HS in various plant species.

  相似文献   
115.
The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume‐based farming is particularly important in Africa, where small‐scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. Although the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land‐use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, whereas crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful “soybean bonanza” across Africa necessitates an intensive research, development, extension, and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.  相似文献   
116.
During soil waterlogging, plants experience O2 deficits, elevated ethylene, and high CO2 in the root‐zone. The effects on chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) of ethylene (2 μL L?1), CO2 (2–20% v/v) or deoxygenated stagnant solution were evaluated. Ethylene and high CO2 reduced root growth of both species, but O2 deficiency had the most damaging effect and especially so for chickpea. Chickpea suffered root tip death when in deoxygenated stagnant solution. High CO2 inhibited root respiration and reduced growth, whereas sugars accumulated in root tips, of both species. Gas‐filled porosity of the basal portion of the primary root of faba bean (23%, v/v) was greater than for chickpea (10%), and internal O2 movement was more prominent in faba bean when in an O2‐free medium. Ethylene treatment increased the porosity of roots. The damaging effects of low O2, such as death of root tips, resulted in poor recovery of root growth upon reaeration. In conclusion, ethylene and high CO2 partially inhibited root extension in both species, but low O2 in deoxygenated stagnant solution had the most damaging effect, even causing death of root tips in chickpea, which was more sensitive to the low O2 condition than faba bean.  相似文献   
117.
Inorganic cesium lead halide perovskite solar cells (PSCs) have received enormous attention due to their excellent stability compared with that of their organic–inorganic counterparts. However, the lack of optimization strategies leads the inorganic PSCs to suffer from low efficiency arising from significant recombination. To overcome this dilemma, a surface modification of the electron transport layer (ETL)/perovskite interface is undertaken by using SmBr3 to improve the crystallization and morphology of the perovskite layer for enhanced ETL/perovskite interface interaction. Encouragingly, a gradient energy band is created at the interface with an outstanding hole blocking effect. As a result, both the charge recombination occurring at the interface and the nonradiative recombination inside the perovskite are suppressed, and, simultaneously, the charge extraction is improved successfully. Therefore, the power conversion efficiency of the CsPbIBr2 PSCs is increased to as high as 10.88% under one sun illumination, which is 30% higher than its counterparts without the modification. It is logically inferred that this valuable optimization strategy can be extended to other analogous structures and materials.  相似文献   
118.
119.
RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties.  相似文献   
120.
Accurate allele frequencies are important for measuring subclonal heterogeneity and clonal evolution. Deep-targeted sequencing data can contain PCR duplicates, inflating perceived read depth. Here we adapted the Illumina TruSeq Custom Amplicon kit to include single molecule tagging (SMT) and show that SMT-identified duplicates arise from PCR. We demonstrate that retention of PCR duplicate reads can imply clonal evolution when none exists, while their removal effectively controls the false positive rate. Additionally, PCR duplicates alter estimates of subclonal heterogeneity in tumor samples. Our method simplifies PCR duplicate identification and emphasizes their removal in studies of tumor heterogeneity and clonal evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0420-4) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号