首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   100篇
  537篇
  2022年   6篇
  2021年   8篇
  2019年   5篇
  2017年   7篇
  2016年   5篇
  2015年   8篇
  2014年   20篇
  2013年   20篇
  2012年   12篇
  2011年   24篇
  2010年   15篇
  2009年   11篇
  2008年   11篇
  2007年   12篇
  2006年   13篇
  2005年   20篇
  2004年   13篇
  2003年   18篇
  2002年   19篇
  2001年   10篇
  2000年   13篇
  1999年   10篇
  1998年   7篇
  1997年   10篇
  1996年   10篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   18篇
  1990年   10篇
  1989年   10篇
  1988年   8篇
  1987年   5篇
  1986年   8篇
  1985年   12篇
  1984年   10篇
  1983年   12篇
  1982年   8篇
  1981年   7篇
  1979年   6篇
  1978年   5篇
  1976年   9篇
  1975年   5篇
  1974年   7篇
  1973年   6篇
  1972年   9篇
  1970年   6篇
  1969年   5篇
  1968年   4篇
排序方式: 共有537条查询结果,搜索用时 15 毫秒
101.
Efficient construction of large-scale linkage maps is highly desired in current gene mapping projects. To evaluate the performance of available approaches in the literature, four published methods, the insertion (IN), seriation (SER), neighbor mapping (NM), and unidirectional growth (UG) were compared on the basis of simulated F2 data with various population sizes, interferences, missing genotype rates, and mis-genotyping rates. Simulation results showed that the IN method outperformed, or at least was comparable to, the other three methods. These algorithms were also applied to a real data set and results showed that the linkage order obtained by the IN algorithm was superior to the other methods. Thus, this study suggests that the IN method should be used when constructing large-scale linkage maps.  相似文献   
102.
T cells devoid of tumor necrosis factor receptor associated factor-3 (Traf3) exhibit decreased proliferation, sensitivity to apoptosis, and an improper response to antigen challenge. We therefore hypothesized that TRAF3 is critical to the growth of malignant T cells. By suppressing TRAF3 protein in different cancerous T cells, we found that anaplastic large cell lymphoma (ALCL) cells require TRAF3 for proliferation. Since reducing TRAF3 results in aberrant activation of the noncanonical nuclear factor-κB (NF-κB) pathway, we prevented noncanonical NF-κB signaling by suppressing RelB together with TRAF3. This revealed that TRAF3 regulates proliferation independent of the noncanonical NF-κB pathway. However, suppression of NF-κB-inducing kinase (NIK) along with TRAF3 showed that high levels of NIK have a partial role in blocking cell cycle progression. Further investigation into the mechanism by which TRAF3 regulates cell division demonstrated that TRAF3 is essential for continued PI3K/AKT and JAK/STAT signaling. In addition, we found that while NIK is dispensable for controlling JAK/STAT activity, NIK is critical to regulating the PI3K/AKT pathway. Analysis of the phosphatase and tensin homolog (PTEN) showed that NIK modulates PI3K/AKT signaling by altering the localization of PTEN. Together our findings implicate TRAF3 as a positive regulator of the PI3K/AKT and JAK/STAT pathways and reveal a novel function for NIK in controlling PI3K/AKT activity. These results provide further insight into the role of TRAF3 and NIK in T cell malignancies and indicate that TRAF3 differentially governs the growth of B and T cell cancers.  相似文献   
103.
We describe the use of a standard optical microscope to perform quantitative measurements of mass, volume, and density on cellular specimens through a combination of bright field and differential interference contrast imagery. Two primary approaches are presented: noninterferometric quantitative phase microscopy (NIQPM), to perform measurements of total cell mass and subcellular density distribution, and Hilbert transform differential interference contrast microscopy (HTDIC) to determine volume. NIQPM is based on a simplified model of wave propagation, termed the paraxial approximation, with three underlying assumptions: low numerical aperture (NA) illumination, weak scattering, and weak absorption of light by the specimen. Fortunately, unstained cellular specimens satisfy these assumptions and low NA illumination is easily achieved on commercial microscopes. HTDIC is used to obtain volumetric information from through-focus DIC imagery under high NA illumination conditions. High NA illumination enables enhanced sectioning of the specimen along the optical axis. Hilbert transform processing on the DIC image stacks greatly enhances edge detection algorithms for localization of the specimen borders in three dimensions by separating the gray values of the specimen intensity from those of the background. The primary advantages of NIQPM and HTDIC lay in their technological accessibility using “off-the-shelf” microscopes. There are two basic limitations of these methods: slow z-stack acquisition time on commercial scopes currently abrogates the investigation of phenomena faster than 1 frame/minute, and secondly, diffraction effects restrict the utility of NIQPM and HTDIC to objects from 0.2 up to 10 (NIQPM) and 20 (HTDIC) μm in diameter, respectively. Hence, the specimen and its associated time dynamics of interest must meet certain size and temporal constraints to enable the use of these methods. Excitingly, most fixed cellular specimens are readily investigated with these methods.  相似文献   
104.
Energetic and reaction-rate interactions between hydrogenic (hydrogen-producing) and hydrogenotrophic (hydrogen-consuming) bacteria were investigated in five perturbation experiments performed on steady-state, mixed-culture methanogenic CSTRs receiving ethanol, propionate, or both hydrogenic substrates. When a large quantity of propionate was suddenly added to a propionatefed CSTR, P(H(2) ) increased to 10(-4) atm and propionate oxidation remained energetically favorable. When ethanol was added to a CSTR receiving ethanol, P(H(2) ) rose to 6.3 x 10(-3) atm within 5 h. In both perturbations, P(H(2) ) remained at levels such that oxidation of the hydrogenic substrate remained energetically favorable throughout the transient. Sudden increase in ethanol concentration in the ethanol- and propionate-fed CSTR resulted in an increase in P(H(2) ) such that propionate oxidation became energetically unfavorable and was blocked. Propionate utilization resumed when the added ethanol was depleted and P(H(2) ) returned to its previous steady-state levels. Ethanol perturbation of ethanol- and propionate-fed CSTRs led to the formation of reduced products, including n-propanol and four-through seven-carbon n-carboxylic acids, when P(H(2) ) was elevated; these products disappeared after P(H(2) ) returned to previous, steady-state levels. The transformations were consistent with reaction energetics. Reduced product formation may have been a sink for reducing equivalents, as an alternative to oxidation for propionate utilization, as indicated by an electron equivalents balance over the time course of experiments.  相似文献   
105.
The embryo defective (emb) mutants in maize genetically define a unique class of loci that is required for embryogenesis but not endosperm development, allowing dissection of two developmental processes of seed formation. Through characterization of the emb14 mutant, we report here that Emb14 gene encodes a circular permuted, YqeH class GTPase protein that likely functions in 30S ribosome formation in plastids. Loss of Emb14 function in the null mutant arrests embryogenesis at the early transition stage. Emb14 was cloned by transposon tagging and was confirmed by analysis of four alleles. Subcellular localization indicated that the EMB14 is targeted to chloroplasts. Recombinant EMB14 is shown to hydrolyze GTP in vitro (Km = 2.42 ± 0.3 μm ). Emb14 was constitutively expressed in all tissues examined and high level of expression was found in transition stage embryos. Comparison of emb14 and WT indicated that loss of EMB14 function severely impairs accumulation of 16S rRNA and several plastid encoded ribosomal genes. We show that an EMB14 transgene complements the pale green, slow growth phenotype conditioned by mutations in AtNOA1, a closely related YqeH GTPase of Arabidopsis. Taken together, we propose that the EMB14/AtNOA1/YqeH class GTPases function in assembly of the 30S subunit of the chloroplast ribosome, and that this function is essential to embryogenesis in plants.  相似文献   
106.
We have examined in two inbred rat strains basal and stress-induced increases in plasma levels of epinephrine (EPI) and norepinephrine (NE) and compared these with activities of the adrenal enzymes involved in the synthesis of catecholamines. There were no differences in basal levels of NE and EPI in plasma of adult male rats of the Wistar-Kyoto (WKY) and Brown-Norway (B-N) strains. However, following 5 min. of intermittent footshock, plasma levels of both catecholamines were twice as high in WKY rats as in B-N rats. In the adrenals of unstressed rats, activities of tyrosine hydroxylase and dopamine-beta-hydroxylase were significantly higher in B-N rats. In addition, the adrenal weights and the contents of NE but not EPI were greater in B-N rats. Thus, in these two rat strains, the capacity of the adrenal gland to synthesize and store catecholamines appeared to be inversely related to plasma levels of NE and EPI after stress. The differences between the strains appeared to be due to differences in the rates of removal of catecholamines from the peripheral circulation as well as to differences in the rate of release of catecholamines from the sympatho-adrenal medullary system. Thus biosynthetic enzyme activities need not be related directly to the capacity to release and elevate plasma levels of catecholamines following stressful stimulation.  相似文献   
107.
M Suzuki  C Y Kao    D R McCarty 《The Plant cell》1997,9(5):799-807
The biochemical activities that underlie the genetically defined activator and repressor functions of the VIVIPAROUS1 (VP1) protein have resisted in vitro analysis. Here, we show that a glutathione S-transferase (GST) fusion protein, including only the highly conserved B3 domain of VP1, has a highly cooperative, sequence-specific DNA binding activity. GST fusion proteins that include larger regions of the VP1 protein have very low activity, indicating that removal of the flanking protein sequences is necessary to elicit DNA binding in vitro. DNA competition and DNase I footprinting analyses show that B3 binds specifically to the Sph element involved in VP1 activation of the C1 gene, whereas binding to the G-box-type VP1-responsive element is of low affinity and is nonspecific. Footprint analysis of the C1 promoter revealed that sequences flanking the core TCCATGCAT motif of Sph also contribute to the recognition of the Sph element in its native context. The salient features of the in vitro GST-B3 DNA interaction are in good agreement with the protein and DNA sequence requirements defined by the functional analyses of VP1 and VP1-responsive elements in maize cells.  相似文献   
108.
Leaf and canopy photosynthesis of cotton (Gossypium hirsutum L.) declines as the crop approaches cutout, just as the assimilate needs for reproductive growth are peaking. Our objective with this study was to determine whether this decline is due to remobilization of leaf components to support the reproductive growth or due to some cue from the changing environmental conditions during the growing season. Field studies were conducted in 1995–1996 at Stoneville, Mississippi, using six cotton genotypes and two planting dates (early and late), which produced two distinctly different cotton populations reaching cutout at different times. Among the six genotypes were a photoperiod sensitive line (non-flowering) and its counter part which had photoperiod insensitive genes backcrossed four times to the photoperiod sensitive line (flowering). This pair was used to assess the degree that the photosynthetic decline could be attributed to reproductive sink development. Leaf CO2-exchange rate (CER) and chlorophyll (Chl) fluorescence measurements were taken in mid-August, a period corresponding to cutout for the early planted plots, and those leaves were collected. Leaf Chl level, soluble protein level, various soluble carbohydrate levels and Rubisco activities were assayed on those leaves. Averaged across years, leaf CER and soluble protein levels were reduced approximately 14% and 18%, respectively, for the early planted compared to the late planted cotton. Neither leaf Chl levels or Chl fluorescence Fv/Fm values for Photosystem II yield were altered by the planting date. In 1996, leaves from the non-flowering line had 12% greater Chl and 20% greater soluble protein levels than the flowering line. However, in 1996, the CER of the early planted non-flowering line was reduced 10% compared to the late planted. Although remobilization of leaf N to reproductive growth appears to be the principle component causing the cutout photosynthetic decline, the data also indicate that environmental factors can play a small role in causing the decline. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
109.
Protein posttranslational modifications critically regulate a range of physiological and disease processes. In addition to tyrosine, serine, and threonine phosphorylation, reversible N‐ε acylation and alkylation of protein lysine residues also modulate diverse aspects of cellular function. Studies of lysine acyl and alkyl modifications have focused on nuclear proteins in epigenetic regulation; however, lysine modifications are also prevalent on cytosolic proteins to serve increasingly apparent, although less understood roles in cell regulation. Here, the methyl‐lysine (meK) proteome of anucleate blood platelets is characterized. With high‐resolution, multiplex MS methods, 190 mono‐, di‐, and tri‐meK modifications are identified on 150 different platelet proteins—including 28 meK modifications quantified by tandem mass tag (TMT) labeling. In addition to identifying meK modifications on calmodulin (CaM), GRP78 (HSPA5, BiP), and EF1A1 that have been previously characterized in other cell types, more novel modifications are also uncovered on cofilin, drebin‐like protein (DBNL, Hip‐55), DOCK8, TRIM25, and numerous other cytoplasmic proteins. Together, the results and analyses support roles for lysine methylation in mediating cytoskeletal, translational, secretory, and other cellular processes. MS data for this study have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012217.  相似文献   
110.
Highly purified coupling factor 1 (CF1) from chloroplasts was found to contain 3.6 mol tryptophan/mol of enzyme. Although the α, β, γ, and δ subunits of the enzyme are devoid of tryptophan, the ? subunit was found to contain two tryptophans per mole. These results support a stoichiometry of two ? per mole of CF1. Two classes of tyrosine and tryptophan were detected in CF1 and evidence for a correlation between activation of the ATPase activity of CF1 and a quenching of tryptophan fluorescence is given. Tryptophan should be a useful marker for the ? subunit and its fluorescence and modification should provide a probe for its function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号