首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   83篇
  2021年   7篇
  2020年   5篇
  2019年   10篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   22篇
  2013年   19篇
  2012年   27篇
  2011年   22篇
  2010年   15篇
  2009年   23篇
  2008年   28篇
  2007年   30篇
  2006年   20篇
  2005年   26篇
  2004年   14篇
  2003年   13篇
  2002年   20篇
  2001年   17篇
  2000年   13篇
  1999年   10篇
  1997年   9篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   9篇
  1991年   9篇
  1990年   9篇
  1989年   12篇
  1988年   12篇
  1987年   11篇
  1986年   14篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1976年   4篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1969年   4篇
  1967年   5篇
  1965年   3篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
491.
Antiarrhythmics, anticonvulsants and local anesthetics inhibit voltage-gated sodium channels and reduce membrane excitability in neurons and muscle, making them useful in the management of cardiac arrhythmias, epilepsy and pain. These compounds, which are often termed singly in the literature as 'local anesthetics', have at least two inhibitory states: a resting inhibition that develops with intermittent stimulation and a higher affinity inhibition that arises upon repeated depolarization and likely involves the inactivated state of the channel. Although elucidating their mechanism of inhibition has been an active area of research for decades, many questions remain unanswered. Do these two inhibitory states share a common, but guarded or modulated receptor? Or do they represent different protonated states of the drugs, many of which have pKa's close to physiological pH, thereby yielding a significant population of both charged and uncharged compound inside cells. Some mechanistic clues can be found by mutating conserved phenylalanine and tyrosine residues of the 'local anesthetic receptor' in the channel's inner vestibule. Mutations of these aromatic residues universally disrupt the mechanism of drug inhibition in numerous channel isoforms. For instance, non aromatic substitutions of Phe1579 (Na(V) numbering) in the pore lining S6 segment of domain four (DIVS6) can abolish inactivated state inhibition.(1,2) The strict conservation of Phe1579 and other DIVS6 aromatic residues in all nine sodium channel isoforms led us to further dissect the role of this and other aromatic residues on local anesthetic inhibition. We recently employed subtly modified phenylalanine derivatives to better understand the role of these aromatics in the binding of local anesthetics and found a significant electrostatic interaction at one site, Phe1579, contributes to channel inhibition.(3) What follows is a self guided tour of our motivation and experimental findings.  相似文献   
492.
493.
The Neuronal Kv4 Channel Complex   总被引:1,自引:0,他引:1  
Kv4 channel complexes mediate the neuronal somatodendritic A-type K+ current (ISA), which plays pivotal roles in dendritic signal integration. These complexes are composed of pore-forming voltage-gated α-subunits (Shal/Kv4) and at least two classes of auxiliary β-subunits: KChIPs (K +-Channel-Interacting-Proteins) and DPLPs (Dipeptidyl-Peptidase-Like-Proteins). Here, we review our investigations of Kv4 gating mechanisms and functional remodeling by specific auxiliary β-subunits. Namely, we have concluded that: (1) the Kv4 channel complex employs novel alternative mechanisms of closed-state inactivation; (2) the intracellular Zn2+ site in the T1 domain undergoes a conformational change tightly coupled to voltage-dependent gating and is targeted by nitrosative modulation; and (3) discrete and specific interactions mediate the effects of KChIPs and DPLPs on activation, inactivation and permeation of Kv4 channels. These studies are shedding new light on the molecular bases of ISA function and regulation. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   
494.
The muscle nicotinic acetylcholine receptor is a large, allosteric, ligand-gated ion channel with the subunit composition alpha2betagammadelta. Although much is now known about the structure of the binding site, relatively little is understood about how the binding event is communicated to the channel gate, causing the pore to open. Here we identify a key hydrogen bond near the binding site that is involved in the gating pathway. Using mutant cycle analysis with the novel unnatural residue alpha-hydroxyserine, we find that the backbone N-H of alphaSer-191 in loop C makes a hydrogen bond to an anionic side chain of the complementary subunit upon agonist binding. However, the anionic partner is not the glutamate predicted by the crystal structures of the homologous acetylcholine-binding protein. Instead, the hydrogen-bonding partner is the extensively researched aspartate gammaAsp-174/deltaAsp-180, which had originally been identified as a key binding residue for cationic agonists.  相似文献   
495.
For small samples, classifier design algorithms typically suffer from overfitting. Given a set of features, a classifier must be designed and its error estimated. For small samples, an error estimator may be unbiased but, owing to a large variance, often give very optimistic estimates. This paper proposes mitigating the small-sample problem by designing classifiers from a probability distribution resulting from spreading the mass of the sample points to make classification more difficult, while maintaining sample geometry. The algorithm is parameterized by the variance of the spreading distribution. By increasing the spread, the algorithm finds gene sets whose classification accuracy remains strong relative to greater spreading of the sample. The error gives a measure of the strength of the feature set as a function of the spread. The algorithm yields feature sets that can distinguish the two classes, not only for the sample data, but for distributions spread beyond the sample data. For linear classifiers, the topic of the present paper, the classifiers are derived analytically from the model, thereby providing an enormous savings in computation time. The algorithm is applied to cancer classification via cDNA microarrays. In particular, the genes BRCA1 and BRCA2 are associated with a hereditary disposition to breast cancer, and the algorithm is used to find gene sets whose expressions can be used to classify BRCA1 and BRCA2 tumors.  相似文献   
496.
The penicillin-binding proteins (PBPs) are a set of enzymes that participate in bacterial peptidoglycan assembly. The absolute numbers of each PBP were determined by direct measurement and have been reported for two Staphylococcus aureus strains, RN4220 (methicillin-sensitive S. aureus) and RN450M (methicillin-resistant S. aureus). From the specific activity of the labeled penicillin and the absolute number of disintegrations per minute, and from the number of CFU per milliliter calculated from proteins and optical density, a determination of the number of PBPs per cell was made. These numbers ranged from approximately 150 to 825 PBPs/cell and represent the first direct determination of absolute numbers of PBPs in S. aureus.  相似文献   
497.
Examination of the three-dimensional structure of intact herpes simplex virus type 1 (HSV-1) virions had revealed that the icosahedrally symmetrical interaction between the tegument and capsid involves the pentons but not the hexons (Z. H. Zhou, D. H. Chen, J. Jakana, F. J. Rixon, and W. Chiu, J. Virol. 73:3210-3218, 1999). To account for this, we postulated that the presence of the small capsid protein, VP26, on top of the hexons was masking potential binding sites and preventing tegument attachment. We have now tested this hypothesis by determining the structure of virions lacking VP26. Apart from the obvious absence of VP26 from the capsids, the structures of the VP26 minus and wild-type virions were essentially identical. Notably, they showed the same tegument attachment patterns, thereby demonstrating that VP26 is not responsible for the divergent tegument binding properties of pentons and hexons.  相似文献   
498.
499.
The study of food webs and trophic interactions increasingly relies on PCR‐based molecular gut‐content analysis. However, this technique may be prone to error from contamination of minute quantities of DNA; i.e., simply storing specimens together in a liquid medium may lead to cross‐contamination. In this study, we used PCR to determine the contamination rate when (1) specimens were stored together in 95% ethanol for various time periods, and (2) predators fall into ethylene glycol‐filled pitfall traps where the dying predator may inadvertently consume prey DNA‐contaminated liquid. We designed experiments and PCR primers to quantify the risk of contamination for both situations and found no contamination by storing specimens together in 95% ethanol. Furthermore, zero predators contained prey DNA in their gut contents from imbibing prey DNA‐contaminated ethylene glycol. These results support the use of mass sampling techniques, like wet pitfall traps, for molecular gut‐content analysis.  相似文献   
500.
MOTIVATION: Intervention in a gene regulatory network is used to help it avoid undesirable states, such as those associated with a disease. Several types of intervention have been studied in the framework of a probabilistic Boolean network (PBN), which is essentially a finite collection of Boolean networks in which at any discrete time point the gene state vector transitions according to the rules of one of the constituent networks. For an instantaneously random PBN, the governing Boolean network is randomly chosen at each time point. For a context-sensitive PBN, the governing Boolean network remains fixed for an interval of time until a binary random variable determines a switch. The theory of automatic control has been previously applied to find optimal strategies for manipulating external (control) variables that affect the transition probabilities of an instantaneously random PBN to desirably affect its dynamic evolution over a finite time horizon. This paper extends the methods of external control to context-sensitive PBNs. RESULTS: This paper treats intervention via external control variables in context-sensitive PBNs by extending the results for instantaneously random PBNs in several directions. First, and most importantly, whereas an instantaneously random PBN yields a Markov chain whose state space is composed of gene vectors, each state of the Markov chain corresponding to a context-sensitive PBN is composed of a pair, the current gene vector occupied by the network and the current constituent Boolean network. Second, the analysis is applied to PBNs with perturbation, meaning that random gene perturbation is permitted at each instant with some probability. Third, the (mathematical) influence of genes within the network is used to choose the particular gene with which to intervene. Lastly, PBNs are designed from data using a recently proposed inference procedure that takes steady-state considerations into account. The results are applied to a context-sensitive PBN derived from gene-expression data collected in a study of metastatic melanoma, the intent being to devise a control strategy that reduces the WNT5A gene's action in affecting biological regulation, since the available data suggest that disruption of this influence could reduce the chance of a melanoma metastasizing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号