首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   6篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   10篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  1998年   2篇
  1992年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   3篇
  1972年   2篇
排序方式: 共有104条查询结果,搜索用时 46 毫秒
21.
Smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of vascular diseases such as atherosclerosis and postangioplasty restenosis. Recently we demonstrated the thiol antioxidantN-acetylcysteine (NAC) inhibits constitutive NF-κB/Rel activity and growth of vascular SMCs. Here we show that treatment of human and bovine aortic SMC with the thiol antioxidant NAC causes cells to exit the cell cycle and remain quiescent as determined by a greatly reduced incorporation of [3H]thymidine and G0/G1DNA content. Removal of NAC from the culture medium stimulates SMCs to synchronously reenter the cell cycle as judged by induction of cyclin D1 and B-mybgene expression during mid and late G1phase, respectively, and induction of histone gene expression and [3H]thymidine incorporation during S phase. The time course of cyclin D1, B-myb,and histone gene expression after NAC removal was similar to that of serum-deprived cells induced to resume cell cycle progression by the addition of fetal bovine serum to the culture medium. Taken together, these results indicate that NAC treatment causes SMCs to enter a reversible G0quiescent, growth-arrested state. Thus, NAC provides an important new method for synchronizing SMCs in culture.  相似文献   
22.
Various techniques, namely differential scanning calorimetry, optical microscopy, dielectric and Raman spectroscopy, all covering a wide range of temperatures, were used to study the thermodynamically stable phases and molecular mobility of crystals of long chain 2-amino alcohols. The results showed that two different crystal forms are present in each sample. The temperature behaviour of the phases is studied in details.  相似文献   
23.
Tissue kallikreins are thought to be present in the pancreatic islets of Langerhans and to aid in the conversion of proinsulin to insulin. In recent immunohistochemical studies, we observed strong staining of the newly identified human kallikreins 6 and 10 (hK6 and hK10) in the islets of Langerhans. Here, we examine hK6 and hK10 immunoexpression in different types of islet cells of the endocrine pancreas, in order to obtain clues for hK6 and hK10 function in these cells. Ten cases of normal pancreatic tissue, two cases of nesidioblastosis, five insulin-producing tumours and one case of multiple endocrine neoplasia 1 syndrome, containing an insulin-, a somatostatin- and several glucagon-producing tumours, as well as tiny foci of endocrine dysplasia with different predominance of the secreted hormones (mainly glucagon and pancreatic polypeptide) were included in the study. A streptavidin–biotin–peroxidase and an alkaline phosphatase protocol, as well as a sequential immunoenzymatic double staining method were performed, using specific antibodies against hK6, hK10, insulin, glucagon, somatostatin, pancreatic polypeptide, and serotonin. hK6 and hK10 immunoexpression was observed in the islets of Langerhans, including the pancreatic polypeptide-rich islets, in the normal pancreas. Scattered hK6 and hK10 positive cells were localized in relationship with pancreatic acinar cells. In the exocrine pancreas, a cytoplasmic and/or brush border hK6 and hK10 immunoexpression was observed in the median and small sized pancreatic ducts, while the acinar cells were negative. Foci of nesidioblastosis and endocrine dysplasia expressed both kallikreins. hK6 and hK10 were also strongly and diffusely expressed throughout all insulin-, glucagon- and somatostatin-producing tumours. The double staining method revealed co-localization of each hormone and hK6/hK10 respectively, in the same cellular population, in the normal as well as in the diseased pancreas. Our results support the view that hK6 and hK10 may be involved in insulin and other pancreatic hormone processing and/or secretion, as well as in physiological functions related to the endocrine pancreas.  相似文献   
24.

Introduction

Within this longitudinal study we investigated the association of inflammation markers C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) and endothelial dysfunction markers intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) with left ventricular mass indexed for height2·71 (LVMI) in hypertensive predialysis CKD patients.

Material and Methods

From 2004 to 2005, 182 incident consecutive adult patients from the outpatient CKD clinics of two hospitals in Greece with CKD and hypertension or using antihypertensive medication, were included. Of these, 107 patients underwent CRP (mg/l) and LVMI (g/height2·71) measurements annually for three years.

Results

In the longitudinal analyses, using linear mixed modeling, a higher IL-6 (ß = 1.9 (95%ci:0.38;3.5), inflammation score based on CRP, IL-6 and TNF-α (ß = 5.0 (95%ci:0.72; 9.4) and VCAM-1 (ß = 0.01 (95%ci:0.005;0.02) were associated with higher LVMI. These models were adjusted for age, gender and primary renal disease, and for confounders that on top changed the beta with ≥10%, i.e. diuretic use (for IL-6 and inflammation score).

Conclusion

The results suggest that in predialysis CKD patients, inflammation as well as endothelial dysfunction may play an important role towards the increase in LVMI.  相似文献   
25.

Background

Inhibition of AKT with MK-2206 has demonstrated synergism with anticancer agents. This phase 1 study assessed the MTD, DLTs, PK, and efficacy of MK-2206 in combination with cytotoxic and targeted therapies.

Methods

Advanced solid tumor patients received oral MK-2206 45 or 60 mg (QOD) with either carboplatin (AUC 6.0) and paclitaxel 200 mg/m2 (arm 1), docetaxel 75 mg/m2 (arm 2), or erlotinib 100 or 150 mg daily (arm 3); alternative schedules of MK-2206 135-200 mg QW or 90-250 mg Q3W were also tested.

Results

MTD of MK-2206 (N?=?72) was 45 mg QOD or 200 mg Q3W (arm 1); MAD was 200 mg Q3W (arm 2) and 135 mg QW (arm 3). DLTs included skin rash (arms 1, 3), febrile neutropenia (QOD, arms 1, 2), tinnitus (Q3W, arm 2), and stomatitis (QOD, arm 3). Common drug-related toxicities included fatigue (68%), nausea (49%), and rash (47%). Two patients with squamous cell carcinoma of the head and neck (arm 1; Q3W) demonstrated a complete and partial response (PR); additional PRs were observed in patients (1 each) with melanoma, endometrial, neuroendocrine prostate, NSCLC, and cervical cancers. Six patients had stable disease ≥6 months.

Conclusion

MK-2206 plus carboplatin and paclitaxel, docetaxel, or erlotinib was well-tolerated, with early evidence of antitumor activity.

Trial registration

ClinicalTrials.gov: NCT00848718.  相似文献   
26.
Several coumarin derivatives have been reported to present multiple biological activities and especially anti-inflammatory/antioxidant activities. Recently the synthesis and in vivo/in vitro anti-inflammatory /antioxidant activities of several new coumarin derivatives with a 7-azomethine linkage have been reported. In the present study these derivatives were further tested for their antioxidant ability. Some of them were found in vitro to inhibit lipid peroxidation and to strongly scavenge superoxide radicals. Compound 3 was found to potently inhibit cyclooxygenase-1 (COX-1) and the yeast-induced rat paw oedema. The most active compounds within the set were tested against adjuvant-induced arthritis. Compound 3 was found to significantly protect the rats from adjuvant-induced arthritis (when it is administered from the first day or when it is administered the fourteenth day, with the first symptoms of the disease). An attempt was made to delineate the possible mechanism of action of the studied compounds.  相似文献   
27.
Cannabinoid receptor CB1 is expressed abundantly in the brain and presumably in the peripheral tissues responsible for energy metabolism. It is unclear if the antiobesity effects of rimonabant, a CB1 antagonist, are mediated through the central or the peripheral CB1 receptors. To address this question, we generated transgenic mice with central nervous system (CNS)-specific knockdown (KD) of CB1, by expressing an artificial microRNA (AMIR) under the control of the neuronal Thy1.2 promoter. In the mutant mice, CB1 expression was reduced in the brain and spinal cord, whereas no change was observed in the superior cervical ganglia (SCG), sympathetic trunk, enteric nervous system, and pancreatic ganglia. In contrast to the neuronal tissues, CB1 was undetectable in the brown adipose tissue (BAT) or the liver. Consistent with the selective loss of central CB1, agonist-induced hypothermia was attenuated in the mutant mice, but the agonist-induced delay of gastrointestinal transit (GIT), a primarily peripheral nervous system-mediated effect, was not. Compared to wild-type (WT) littermates, the mutant mice displayed reduced body weight (BW), adiposity, and feeding efficiency, and when fed a high-fat diet (HFD), showed decreased plasma insulin, leptin, cholesterol, and triglyceride levels, and elevated adiponectin levels. Furthermore, the therapeutic effects of rimonabant on food intake (FI), BW, and serum parameters were markedly reduced and correlated with the degree of CB1 KD. Thus, KD of CB1 in the CNS recapitulates the metabolic phenotype of CB1 knockout (KO) mice and diminishes rimonabant's efficacy, indicating that blockade of central CB1 is required for rimonabant's antiobesity actions.  相似文献   
28.
Here, we investigated how LDL receptor deficiency (Ldlr−/−) modulates the effects of testosterone on obesity and related metabolic dysfunctions. Though sham-operated Ldlr−/− mice fed Western-type diet for 12 weeks became obese and showed disturbed plasma glucose metabolism and plasma cholesterol and TG profiles, castrated mice were resistant to diet-induced obesity and had improved glucose metabolism and reduced plasma TG levels, despite a further deterioration in their plasma cholesterol profile. The effect of hypogonadism on diet-induced weight gain of Ldlr−/− mice was independent of ApoE and Lrp1. Indirect calorimetry analysis indicated that hypogonadism in Ldlr−/− mice was associated with increased metabolic rate. Indeed, mitochondrial cytochrome c and uncoupling protein 1 expression were elevated, primarily in white adipose tissue, confirming increased mitochondrial metabolic activity due to thermogenesis. Testosterone replacement in castrated Ldlr−/− mice for a period of 8 weeks promoted diet-induced obesity, indicating a direct role of testosterone in the observed phenotype. Treatment of sham-operated Ldlr−/− mice with the aromatase inhibitor exemestane for 8 weeks showed that the obesity of castrated Ldlr−/− mice is independent of estrogens. Overall, our data reveal a novel role of Ldlr as functional modulator of metabolic alterations associated with hypogonadism.  相似文献   
29.
The explosive 2,4,6-trinitrotoluene (TNT) is a major worldwide military pollutant. The presence of this toxic and highly persistent pollutant, particularly at military sites and former manufacturing facilities, presents various health and environmental concerns. Due to the chemically resistant structure of TNT, it has proven to be highly recalcitrant to biodegradation in the environment. Here, we demonstrate the importance of two glutathione transferases (GSTs), GST-U24 and GST-U25, from Arabidopsis (Arabidopsis thaliana) that are specifically up-regulated in response to TNT exposure. To assess the role of GST-U24 and GST-U25, we purified and characterized recombinant forms of both enzymes and demonstrated the formation of three TNT glutathionyl products. Importantly, GST-U25 catalyzed the denitration of TNT to form 2-glutathionyl-4,6-dinitrotoluene, a product that is likely to be more amenable to subsequent biodegradation in the environment. Despite the presence of this biochemical detoxification pathway in plants, physiological concentrations of GST-U24 and GST-U25 result in only a limited innate ability to cope with the levels of TNT found at contaminated sites. We demonstrate that Arabidopsis plants overexpressing GST-U24 and GST-U25 exhibit significantly enhanced ability to withstand and detoxify TNT, properties that could be applied for in planta detoxification of TNT in the field. The overexpressing lines removed significantly more TNT from soil and exhibited a corresponding reduction in glutathione levels when compared with wild-type plants. However, in the absence of TNT, overexpression of these GSTs reduces root and shoot biomass, and although glutathione levels are not affected, this effect has implications for xenobiotic detoxification.The containment and cleanup of environmental pollutants is increasingly both a legal requirement and a responsible action in many developed countries. The most commonly used explosives in military weapons are 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and their continual use, along with production and decommissioning, are progressively contaminating millions of hectares of military land (Rylott and Bruce, 2009). Bioremediation of TNT is particularly challenging, as the electron-withdrawing properties of the three nitro groups render the aromatic ring particularly resistant to oxidative attack and ring cleavage by microbial oxygenases, which in the environment are normally central to the biodegradation of aromatic compounds (Qasim et al., 2007). In the United States, the Environmental Protection Agency and the military are addressing methods by which toxic TNT and RDX can be contained and detoxified on active military training ranges. One way this problem might be tackled is through the use of plants that are adapted to detoxify these compounds. This could be achieved either by traditional breeding programs or by genetic modification, as has been demonstrated previously for both RDX and TNT (Hannink et al., 2001; Rylott et al., 2006; Jackson et al., 2007).In the majority of species tested so far (tobacco [Nicotiana tabacum], bean [Phaseolus vulgaris], wheat [Triticum aestivum], poplar [Populus spp.], and switchgrass [Panicum virgatum]), with the exception of some conifer trees (Schoenmuth and Pestemer, 2004), TNT is located almost entirely in the roots (Sens et al., 1998, 1999; Hannink et al., 2007; Van Dillewijn et al., 2008; Brentner et al., 2010). Endogenous metabolism of TNT by plants has been characterized (Rylott and Bruce, 2009; Rylott et al., 2011b), with recent research focusing on the model plant species Arabidopsis (Arabidopsis thaliana; Hannink et al., 2001; Van Dillewijn et al., 2008; Rylott et al., 2011a). First, TNT is transformed by nitroreductases to hydroxylamino dinitrotoluenes (HADNTs), with a varying portion further reduced to amino dinitrotoluenes (ADNTs). In Arabidopsis, oxophytodienoate reductases are known to catalyze these steps (Beynon et al., 2009). Plants engineered to express bacterial nitroreductases, which also perform this transformation step, have increased TNT transformation activity and show dramatically enhanced resistance to TNT (Hannink et al., 2001; Rylott et al., 2011a). The additional functionality of HADNTs and ADNTs permits their subsequent conjugation to amino acids, organic acids, and sugars (Bhadra et al., 1999, 2001), and conjugation of HADNT and ADNT isomers to Glc by Arabidopsis glucosyltransferases has been characterized (Gandia-Herrero et al., 2008), with research suggesting that these conjugates are subsequently sequestered within the cell walls (Rylott and Bruce, 2009).Glutathione transferases (GSTs) are a multigene family of proteins known to conjugate glutathione to electrophilic molecules and, in plants, are involved in the detoxification of herbicide xenobiotics (Cummins et al., 2011). Since GSTs have evolved the ability to catalyze glutathione-linked reactions with thousands of different chemical structures, it has been hypothesized that GSTs should play a central role, alongside glucosyltransferases, in the detoxification of TNT (Mezzari et al., 2005; Brentner et al., 2008). Gene expression studies in poplar (Tanaka et al., 2007; Brentner et al., 2008) and Arabidopsis (Ekman et al., 2003; Mezzari et al., 2005; Gandia-Herrero et al., 2008) have identified GSTs up-regulated in response to TNT; however, to date, the biochemical response of GSTs toward TNT has not been investigated. The overexpression of plant GSTs has been shown to increase resistance to a range of stresses, with some τ class GSTs shown to detoxify herbicides via a conjugation activity (Dixon and Edwards, 2010; Cummins et al., 2011). Many Arabidopsis GSTs (in common with some mammalian and other plant GSTs) exhibit a glutathione-dependent peroxide (GPOX) activity (Dixon and Edwards, 2010), catalyzing the reduction of lipid hydroperoxides to the respective monohydroxyalcohols, an activity that confers tolerance to a number of oxidative stresses (Dixon et al., 1998; Dixon and Edwards, 2010). Here, we expressed, purified, and characterized TNT-responsive Arabidopsis GSTs and investigated their contribution toward the detoxification of TNT in Arabidopsis.  相似文献   
30.
Molecular studies examining the impact of mitochondrial morphology on the mammalian heart have previously focused on dynamin related protein-1 (Drp-1) and mitofusin-2 (Mfn-2), while the role of the other mitofusin isoform, Mfn-1, has remained largely unexplored. In the present study, we report the generation and initial characterization of cardiomyocyte-specific Mfn-1 knockout (Mfn-1 KO) mice. Using electron microscopic analysis, we detect a greater prevalence of small, spherical mitochondria in Mfn-1 KO hearts, indicating that the absence of Mfn-1 causes a profound shift in the mitochondrial fusion/fission balance. Nevertheless, Mfn-1 KO mice exhibit normal left-ventricular function, and isolated Mfn-1 KO heart mitochondria display a normal respiratory repertoire. Mfn-1 KO myocytes are protected from mitochondrial depolarization and exhibit improved viability when challenged with reactive oxygen species (ROS) in the form of hydrogen peroxide (H(2)O(2)). Furthermore, in vitro studies detect a blunted response of KO mitochondria to undergo peroxide-induced mitochondrial permeability transition pore opening. These data suggest that Mfn-1 deletion confers protection against ROS-induced mitochondrial dysfunction. Collectively, we suggest that mitochondrial fragmentation in myocytes is not sufficient to induce heart dysfunction or trigger cardiomyocyte death. Additionally, our data suggest that endogenous levels of Mfn-1 can attenuate myocyte viability in the face of an imminent ROS overload, an effect that could be associated with the ability of Mfn-1 to remodel the outer mitochondrial membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号