首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   2篇
  54篇
  2019年   6篇
  2018年   3篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1985年   1篇
排序方式: 共有54条查询结果,搜索用时 0 毫秒
41.
Growing evidence suggests that thyroid dysfunction may contribute to progression of cardiac disease to heart failure. We investigated the effects of a therapeutic dose of thyroid hormones (TH) on cardiomyopathic (CM) hamsters from 4 to 6 mo of age. CM hamsters had subclinical hypothyroidism (normal thyroxine, elevated TSH). Left ventricular (LV) function was determined by echocardiography and hemodynamics. Whole tissue pathology and isolated myocyte size and number were assessed. TH treatment prevented the decline in heart rate and rate of LV pressure increase and improved LV ejection fraction. The percentage of fibrosis/necrosis in untreated 4-mo-old CM (4CM; 15.5 +/- 2.2%) and 6-mo-old CM (6CM; 21.5 +/- 2.4%) hamsters was pronounced and was reversed in treated CM (TCM; 11.9 +/- 0.9%) hamsters. Total ventricular myocyte number was the same between 4- and 6-mo-old controls but was reduced by 30% in 4CM and 43% in 6CM hamsters. TH treatment completely prevented further loss of myocytes in TCM hamsters. Compared with age-matched controls, resting and maximum coronary blood flow was impaired in 4CM and 6CM hamsters. Blood flow was completely normalized by TH treatment. We conclude that TH treatment of CM hamsters with subclinical hypothyroidism normalized impaired coronary blood flow, which prevented the decline in LV function and loss of myocytes.  相似文献   
42.
The tumor suppressor p53, and the cyclin-dependent kinase inhibitor Ink4c, have been both implicated in spermatogenesis control. Both p53-/- and Ink4c-/- single knockout male mice are fertile, despite testicular hypertrophy, Leydig cell differentiation defect, and increased sperm count in Ink4c-/- males. To investigate their collaborative roles, we studied p53-/- Ink4c-/- dual knockout animals, and found that male p53-/- Ink4c-/- mice have profoundly reduced fertility. Dual knockout male mice show a marked decrease in sperm count, abnormal sperm morphology and motility, prolongation of spermatozoa proliferation and delay of meiosis entry, and accumulation of DNA damage. Genetic studies showed that the effects of p53 loss on fertility are independent of its downstream effector Cdkn1a. Absence of p53 also partially reverses the hyperplasia seen upon Ink4c loss, and normalizes the Leydig cell differentiation defect. These results implicate p53 in mitigating both the delayed entry into meiosis and the secondary apoptotic response that occur in the absence of Ink4c. We conclude that the cell cycle genes p53 and Ink4c collaborate in sperm cell development and differentiation, and may be important candidates to investigate in human male infertility conditions.  相似文献   
43.
44.
Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants.  相似文献   
45.
The purpose of this study was to examine the time-of-day effects on the offensive capability and aerobic performance in football game in young subjects. In a randomized order, participants realized the Yo–Yo intermittent recovery test in two test sessions and a football game situations (two 15-min games), interspersed by a verbalization sequence (3 min) at 08:00 and 17:00 h on separate days. A recovery period of 24 h was permitted between two consecutive test sessions. The results revealed diurnal variations on the maximal aerobic velocity during the Yo–Yo test (MAV) and the oral temperature with higher values in the afternoon than morning (p < 0.05). Concerning offensive capability, the numbers of scored goals were significantly higher at 17:00 h in comparison with 08:00 h (p < 0.05). However, there was no significant difference between 08:00 and 17:00 h for the kicked balls (shooting parameter). In conclusion, our findings suggest that performance was improved in the evening and the parameters (shooting and Scored goals) can be used as a model to describe the offensive capacity in football game depending on the time of day.  相似文献   
46.
Conventional method to identify and classify individual chromosomes depends on the unique banding pattern of each chromosome in a specific species being analyzed 1, 2. This classical banding technique, however, is not reliable in identifying complex chromosomal aberrations such as those associated with cancer. To overcome the limitations of the banding technique, Spectral Karyotyping (SKY) is introduced to provide much reliable information on chromosome abnormalities.SKY is a multicolor fluorescence in-situ hybridization (FISH) technique to detect metaphase chromosomes with spectral microscope 3, 4. SKY has been proven to be a valuable tool for the cytogenetic analysis of a broad range of chromosome abnormalities associated with a large number of genetic diseases and malignancies 5, 6. SKY involves the use of multicolor fluorescently-labelled DNA probes prepared from the degenerate oligonucleotide primers by PCR. Thus, every chromosome has a unique spectral color after in-situ hybridization with probes, which are differentially labelled with a mixture of fluorescent dyes (Rhodamine, Texas Red, Cy5, FITC and Cy5.5). The probes used for SKY consist of up to 55 chromosome specific probes 7-10.The procedure for SKY involves several steps (Figure 1). SKY requires the availability of cells with high mitotic index from normal or diseased tissue or blood. The chromosomes of a single cell from either a freshly isolated primary cell or a cell line are spread on a glass slide. This chromosome spread is labeled with a different combination of fluorescent dyes specific for each chromosome. For probe detection and image acquisition,the spectral imaging system consists of sagnac interferometer and a CCD camera. This allows measurement of the visible light spectrum emitted from the sample and to acquire a spectral image from individual chromosomes. HiSKY, the software used to analyze the results of the captured images, provides an easy identification of chromosome anomalies. The end result is a metaphase and a karyotype classification image, in which each pair of chromosomes has a distinct color (Figure 2). This allows easy identification of chromosome identities and translocations. For more details, please visit Applied Spectral Imaging website (http://www.spectral-imaging.com/).SKY was recently used for an identification of chromosome segregation defects and chromosome abnormalities in humans and mice with Autosomal Dominant Polycystic Kidney Disease (ADPKD), a genetic disease characterized by dysfunction in primary cilia 11-13. Using this technique, we demonstrated the presence of abnormal chromosome segregation and chromosomal defects in ADPKD patients and mouse models 14. Further analyses using SKY not only allowed us to identify chromosomal number and identity, but also to accurately detect very complex chromosomal aberrations such as chromosome deletions and translocations (Figure 2).  相似文献   
47.
Despite the important functions of protein transmembrane domains, their structure and dynamics are often scarcely known. The SNARE proteins VAMP/synaptobrevin and syntaxin 1 are implicated in membrane fusion. Using different spectroscopic approaches we observed a marked sensitivity of their transmembrane domain structure in regard to the lipid/peptide ratio. In the dilute condition, peptides corresponding to the complete transmembrane domain fold into an α-helix inserted at ∼ 35° to the normal of the membranes, an observation in line with molecular simulations. Upon an increase in the peptide/lipid ratio, the peptides readily exhibited transition to β-sheet structure. Moreover, the insertion angle of these β-sheets increased to 54° and was accompanied by a derangement of lipid acyl chains. For both proteins the transition from α-helix to β-sheet was reversible under certain conditions by increasing the peptide/lipid ratio. This phenomenon was observed in different model systems including multibilayers and small unilamellar vesicles. In addition, differences in peptide structure and transitions were observed when using distinct lipids (DMPC, DPPC or DOPC) thus indicating parameters influencing transmembrane domain structure and conversion from helices to sheets. The putative functional consequences of this unprecedented dynamic behavior of a transmembrane domain are discussed.  相似文献   
48.
Elevated glomerular capillary pressure (Pgc) and hyperglycemia contribute to glomerular filtration barrier injury observed in diabetic nephropathy (DN). Previous studies showed that hypertensive conditions alone or in combination with a diabetic milieu impact podocyte cellular function which results in podocyte death, detachment or hypertrophy. The present study was aimed at uncovering the initial signaling profile activated by Pgc (mimicked by in vitro mechanical stretch), hyperglycemia (high glucose (HG), 25 mM d-glucose) and prostaglandin E2 (PGE2) in conditionally-immortalized mouse podocytes. PGE2 significantly reduced the active form of AKT by selectively blunting its phosphorylation on S473, but not on T308. AKT inhibition by PGE2 was reversed following either siRNA-mediated EP4 knockdown, PKA inhibition (H89), or phosphatase inhibition (orthovanadate). Podocytes treated for 20 min with H2O2 (10?4 M), which mimics reactive oxygen species generation by cells challenged by hyperglycemic or enhanced Pgc conditions, significantly increased the levels of active p38 MAPK, AKT, JNK and ERK1/2. Interestingly, stretch and PGE2 each significantly reduced H2O2-mediated AKT phosphorylation and was reversed by pretreatment with orthovanadate while stretch alone reduced GSK-3β inhibitory phosphorylation at ser-9. Finally, mechanical stretch alone or in combination with HG, induced ERK1/2 and JNK activation, via the EGF receptor since AG1478, a specific EGF receptor kinase inhibitor, blocked this activation. These results show that cellular signaling in podocytes is significantly altered under diabetic conditions (i.e., hyperglycemia and increased Pgc). These changes in MAPKs and AKT activities might impact cellular integrity required for a functional glomerular filtration barrier thereby contributing to the onset of proteinuria in DN.  相似文献   
49.
Eight young female camels shared in four groups of two 2 years received a basal diet enriched respectively with 0, 2, 4, and 8 mg selenium under sodium selenite form for 64 days. Feed intake was assessed daily; blood samples were taken on weekly basis. One camel from each group was killed at the end of the experiment. Se concentration in serum was increased significantly in the supplemented groups with an average of 176.3 ± 18.0 ng/mL in the control group, 382.7 ± 107.6 in the group receiving 2 mg Se, 519.8 ± 168.4 in the group receiving 4 mg Se, and 533.4 ± 158.6 in the group receiving 8 mg Se daily. For glutathione peroxidase (GSH-Px) activity, the control group (51.0 IU/g Hb) and the group receiving 2 mg (50.5 IU/g Hb) were significantly different than groups receiving 4 and 8 mg (respectively, 65.9 and 76.1 IU/g Hb). No significant variation occurred for vitamin E (mean, 0.56 ± 0.23 ng/mL). Significant correlation between serum Se and GSH-Px was reported. Kidney was the richest organ in selenium followed by lung, spleen, and liver, but the increase in supplemented groups was more marked in liver and kidney. The hair seemed to be the best indicator of selenium intake in camel.  相似文献   
50.
Cyclooxygenase-2 (COX-2)-dependent prostaglandin E(2) (PGE(2)) synthesis correlates with the onset of proteinuria and increased glomerular capillary pressure (P(gc)) glomerular disease models. We previously showed that an in vitro surrogate for P(gc) (cyclical mechanical stretch) upregulates the expression of both COX-2 and the PGE(2) responsive E-Prostanoid receptor, EP(4) in cultured mouse podocytes. In the present study we further delineate the signaling pathways regulating podocyte COX-2 induction. Time course experiments carried out in conditionally-immortalized mouse podocytes revealed that PGE(2) transiently increased phosphorylated p38 MAPK levels at 10 min, and induced COX-2 protein expression at 4 h. siRNA-mediated knockdown of EP(4) receptor expression, unlike treatment with the EP(1) receptor antagonist SC 19220, completely abrogated PGE(2)-induced p38 phosphorylation and COX-2 upregulation suggesting the involvement of the EP(4) receptor subtype. PGE(2)-induced COX-2 induction was abrogated by inhibition of either p38 MAPK or AMP activated protein kinase (AMPK), and was mimicked by AICAR, a selective AMPK activator, and by the cAMP-elevating agents, forskolin (FSK) and IBMX. Surprisingly, neither PGE(2) nor FSK/IBMX-dependent p38 activation and COX-2 expression were blocked by PKA inhibitors or mimicked by 8-cPT-cAMP a selective EPAC activator, but were instead abrogated by Compound C, suggesting the involvement of AMPK. These results indicate that in addition to mechanical stretch, PGE(2) initiates a positive feedback loop in podocytes that drives p38 MAPK activity and COX-2 expression through a cAMP/AMPK-dependent, but PKA-independent signaling cascade. This PGE(2)-induced signaling network activated by increased P(gc) could be detrimental to podocyte health and glomerular filtration barrier integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号