首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9600篇
  免费   1042篇
  国内免费   50篇
  10692篇
  2023年   45篇
  2022年   85篇
  2021年   172篇
  2020年   96篇
  2019年   112篇
  2018年   147篇
  2017年   151篇
  2016年   230篇
  2015年   424篇
  2014年   429篇
  2013年   525篇
  2012年   696篇
  2011年   692篇
  2010年   384篇
  2009年   326篇
  2008年   505篇
  2007年   454篇
  2006年   437篇
  2005年   410篇
  2004年   389篇
  2003年   326篇
  2002年   303篇
  2001年   251篇
  2000年   267篇
  1999年   236篇
  1998年   115篇
  1997年   82篇
  1996年   79篇
  1995年   71篇
  1994年   65篇
  1993年   83篇
  1992年   173篇
  1991年   138篇
  1990年   163篇
  1989年   136篇
  1988年   148篇
  1987年   122篇
  1986年   117篇
  1985年   127篇
  1984年   94篇
  1983年   58篇
  1982年   50篇
  1981年   55篇
  1980年   48篇
  1979年   84篇
  1978年   77篇
  1977年   72篇
  1976年   55篇
  1974年   50篇
  1973年   54篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
In an attempt to prepare a library of short oligoadenylate analogues featuring both the enzyme‐stable internucleotide linkage and the 5′‐O‐methylphosphonate moiety and thus obtain a pool of potential RNase L agonists/antagonists, we studied the spontaneous polycondensation of the adenosin‐5′‐O‐ylmethylphosphonic acid (pcA), an isopolar AMP analogue, and its imidazolide derivatives employing N,N′‐dicyclohexylcarbodiimide under nonaqueous conditions and uranyl ions under aqueous conditions, respectively. The RP LC–MS analyses of the reaction mixtures per se, and those obtained after the periodate treatment, along with analyses and separations by capillary zone electrophoresis, allowed us to characterize major linear and cyclic oligoadenylates obtained. The structure of selected compounds was supported, after their isolation, by NMR spectroscopy. Ab initio calculation of the model structures simulating the AMP‐imidazolide and pcA‐imidazolide offered the explanation why the latter compound exerted, in contrast to AMP‐imidazolide, a very low stability in aqueous solutions. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 277–289, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
982.
Excessive sugar intake in animal models may cause tissue damage associated with oxidative and carbonyl stress cytotoxicity as well as inflammation. Fructose became a 100-fold more cytotoxic if hepatocytes were exposed to a non-toxic infusion of H2O2 so as to simulate H2O2 released by Kupffer cells or infiltrating immune cells. In order to determine the molecular mechanisms involved, protein carbonylation of fructose and its metabolites were determined using the 2,4-dinitrophenylhydrazine method. In a cell-free system, fructose was found to carbonylate bovine serum albumin (BSA) only if low concentrations of FeII/H2O2 were added. Protein carbonylation by the fructose metabolites glyceraldehyde or glycolaldehyde was also markedly increased by FeII/H2O2. The protein carbonylation may be attributed to glyoxal formation by hydroxyl radicals as the glyoxal trapping agent aminoguanidine or hydroxyl radical scavengers prevented protein carbonylation. Glyoxal was also much more effective than other carbonyls at causing protein carbonylation. When BSA was replaced by isolated rat hepatocytes, fructose metabolite glyceraldehyde in the presence of non-toxic 2 μM FeII:8-hydroxyquinoline (HQ) and a H2O2 generating system (glucose/glucose oxidase) markedly increased cytotoxicity, protein carbonylation and reactive oxygen species (ROS)/H2O2 formation. Furthermore this was prevented by hydroxyl radical scavengers or aminoguanidine, a glyoxal scavenger. CuII: 8-hydroxyquinoline increased H2O2 induced hepatocyte protein carbonylation less but was prevented by aminoguanidine. However, cytotoxicity and protein carbonylation induced by glyceraldehyde/CuII:HQ/H2O2 were not affected by hydroxyl radical scavengers. Although fatty liver induced by an excessive sugar diet in animal models has been proposed as the first hit for non-alcoholic steatohepatitis (NASH) we propose that oxidative stress induced by the oxidation of fructose or fructose metabolites catalysed by Fenton FeII/H2O2 could be a ‘second hit’. A perpetual cycle of oxidative stress in hepatocytes could lead to cytotoxicity and contribute to NASH development.  相似文献   
983.
Protein phosphatase 2A (PP2A), in its activated form as a phosphatase, is a tumour suppressor. However, when PP2A is phosphorylated at the tyrosine residue (pY307), it loses its phosphatase activity and becomes inactivated. In our previous study, we found a higher expression of pY307-PP2A in HER-2/neu positive breast tumour samples and significantly correlated to tumour progression, and in this context, it could function as a proto-oncogene. The above and subsequent findings led us to postulate that the critical role of PP2A in maintaining the balance between cell survival and cell death may be linked to its phosphorylation status at its Y307 residue. Hence, we further investigated the effects of knocking down the PP2A catalytic subunit which contains the Y307 amino acid residue in two HER-2/neu positive breast cancer cell lines, BT474 and SKBR3. We showed that this causes the silenced HER-2/neu breast cancer cells to undergo apoptosis and furthermore, that such apoptosis is mediated by p38 MAPK-caspase 3/PARP activation. Understanding the role of PP2A in HER2/neu positive cells might thus provide insight into new targets for breast cancer therapy.  相似文献   
984.
The rubella virus (RUBV) nonstructural (NS) protease domain, a Ca2+- and Zn2+-binding papain-like cysteine protease domain within the nonstructural replicase polyprotein precursor, is responsible for the self-cleavage of the precursor into two mature products, P150 and P90, that compose the replication complex that mediates viral RNA replication; the NS protease resides at the C terminus of P150. Here we report the Ca2+-dependent, stoichiometric association of calmodulin (CaM) with the RUBV NS protease. Co-immunoprecipitation and pulldown assays coupled with site-directed mutagenesis demonstrated that both the P150 protein and a 110-residue minidomain within NS protease interacted directly with Ca2+/CaM. The specific interaction was mapped to a putative CaM-binding domain. A 32-mer peptide (residues 1152–1183, denoted as RUBpep) containing the putative CaM-binding domain was used to investigate the association of RUBV NS protease with CaM or its N- and C-terminal subdomains. We found that RUBpep bound to Ca2+/CaM with a dissociation constant of 100–300 nm. The C-terminal subdomain of CaM preferentially bound to RUBpep with an affinity 12.5-fold stronger than the N-terminal subdomain. Fluorescence, circular dichroism and NMR spectroscopic studies revealed a “wrapping around” mode of interaction between RUBpep and Ca2+/CaM with substantially more helical structure in RUBpep and a global structural change in CaM upon complex formation. Using a site-directed mutagenesis approach, we further demonstrated that association of CaM with the CaM-binding domain in the RUBV NS protease was necessary for NS protease activity and infectivity.  相似文献   
985.
Using serum from guinea-pigs immunized with a DeltaAFMP1DeltaAFMP2 deletion mutant of Aspergillus fumigatus to screen a cDNA library of A. fumigatus, we cloned a novel immunogenic 57-kDa protein in A. fumigatus. We also cloned its 55-kDa homologue in Penicillium marneffei, which was possibly related to amino acid biosynthesis and metabolism, with homologues present only in the subphylum Pezizomycotina of Ascomycota. The recombinant 55-kDa protein of P. marneffei reacted strongly with guinea-pig serum immunized with P. marneffei and with the sera of patients with P. marneffei infection. A similar approach could be applied to immunogenic protein screening in other microorganisms for serological diagnosis, epidemiological studies and the study of vaccines.  相似文献   
986.
Lee KH  Thompson RF 《Neuron》2006,51(6):680-682
Long-term potentiation (LTP) and long-term depression (LTD) are arguably two of the most widely discussed cellular plasticity mechanisms for learning and memory. However, the extent to which they are required for behavioral plasticity and learning is not clear. In this issue of Neuron, Boyden et al. use mice lacking CaMKIV and Hansel et al. use mice lacking alphaCaMKII to assess the contribution of LTD to cerebellar learning.  相似文献   
987.
Ryu J  Liu L  Wong TP  Wu DC  Burette A  Weinberg R  Wang YT  Sheng M 《Neuron》2006,49(2):175-182
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.  相似文献   
988.
The draft new recommendations of the ICRP emphasize the need for transition from the collective dose to the dose matrix concept with optimization of the radiation protection system. In fact, this means assessment of the attributive (radiation-induced) risk at individual level with allowance for the dynamics of dose accumulation during the whole length of professional experience. The work provides assessments for high potential risk group from the "Mayak" personnel based on the dose matrix and using the UNSCEAR technique for assessing the attributive risk. It was found that about 2% of "Mayak" personnel subject to individual dosimetric monitoring in 2005 can be attributed to this group.  相似文献   
989.
Intracellular Ags are processed into small peptides that are presented on cell surfaces in the context of HLA class I molecules. These peptides are recognized by TCRs displayed by CD8+ T lymphocytes (T cells). To date, direct identification and quantitation of these peptides has relied primarily on mass spectrometry analysis, which is expensive and requires large quantities of diseased tissues to obtain useful results. Here we demonstrate that multimerization of a soluble single-chain TCR (scTCR), recognizing a peptide from p53 presented in the context of HLA-A2.1, could be used to directly visualize and quantitate peptide/MHC complexes on unmanipulated human tumor cells. Tumor cells displaying as few as 500 peptide/MHC complexes were readily detectable by flow cytometry. The scTCR/multimers exhibited exquisite recognition capability and could distinguish peptides differing in as little as a single amino acid. We also demonstrate that scTCR/multimers could specifically stain human tumors generated in mice, as well as tumors obtained from patient biopsies. Thus, scTCR/multimers represent a novel class of immunostaining reagents that could be used to validate, quantitate, or monitor epitope presentation by cancer cells.  相似文献   
990.
We recently identified expression of the semaphorin receptor, plexin-A1, in dendritic cells (DCs); however, its function in these cells remains to be elucidated. To investigate function and maximize physiological relevance, we devised a retroviral approach to ablate plexin-A1 gene expression using small hairpin RNA (shRNA) in primary bone marrow-derived DCs. We show that plexin-A1 localizes within the cytoplasm of immature DCs, becomes membrane-associated, and is enriched at the immune synapse in mature DCs. Reducing plexin-A1 expression with shRNA greatly reduced actin polarization as well as Rho activation without affecting Rac or Cdc42 activation. A Rho inhibitor, C3, also reduced actin polarization. These changes were accompanied by the near-ablation of T cell activation. We propose a mechanism of adaptive immune regulation in which plexin-A1 controls Rho activation and actin cytoskeletal rearrangements in DCs that is associated with enhanced DC-T cell interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号