首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104240篇
  免费   1256篇
  国内免费   1445篇
  106941篇
  2023年   128篇
  2022年   285篇
  2021年   493篇
  2020年   341篇
  2019年   389篇
  2018年   12140篇
  2017年   10888篇
  2016年   7859篇
  2015年   1252篇
  2014年   1049篇
  2013年   1158篇
  2012年   5100篇
  2011年   13587篇
  2010年   12446篇
  2009年   8637篇
  2008年   10312篇
  2007年   11813篇
  2006年   706篇
  2005年   849篇
  2004年   1321篇
  2003年   1316篇
  2002年   1033篇
  2001年   479篇
  2000年   369篇
  1999年   226篇
  1998年   121篇
  1997年   127篇
  1996年   92篇
  1995年   89篇
  1994年   106篇
  1993年   127篇
  1992年   171篇
  1991年   168篇
  1990年   103篇
  1989年   99篇
  1988年   107篇
  1987年   95篇
  1986年   66篇
  1985年   83篇
  1984年   71篇
  1983年   66篇
  1982年   36篇
  1981年   29篇
  1979年   55篇
  1978年   34篇
  1977年   33篇
  1975年   35篇
  1973年   29篇
  1972年   270篇
  1971年   299篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
We verified infestation of Oligonychus milleri (McGregor) on plantations of Pinus caribaea (Pinaceae) and of Oligonychus ununguis (Jacobi) on plantations of Eucalyptus urophylla x Eucalyptus grandis (Myrtaceae) in State of Rondônia, Northern region of Brazil. This represents the first record of O. milleri in Brazil. Oligonychus ununguis was recorded previously, on cypress. The damage caused by these two spider mites in the plantations is described herein.  相似文献   
992.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a limiting factor in soybean production in the North Central region of the USA. The objectives of this work were to identify sources of resistance to A. glycines in 14 soybean genotypes, and also document changes in total protein, peroxidase, and chlorophyll in response to aphid feeding. A reduced number of A. glycines was observed on the genotypes UX 2569-159-2-01 and UX 2570-171- 04, indicating the presence of antixenosis and/or antibiosis. UX 2569-159-2-01 expressed the highest level of resistance; whereas, UX 2570-171-04 had moderate levels of resistance to A. glycines. Chlorophyll content was relatively unaffected by A. glycines, except for a reduction in UX 2569-159-2-01 infested plants at 5 and 15 days after infestation (DAI). No changes were detected in total protein content between infested and control plants for the genotypes analyzed; however, peroxidase activity was higher in infested UX 2570-171-04 at both 5 and 10 DAI. This improvement in peroxidase content in infested UX 2570-171-04 may be playing multiple roles in the plant tolerance.  相似文献   
993.
Fluoroquinolones and propionic acid derivatives are widely used antibacterials and non-steroidal anti-inflammatory drugs, respectively, which have been reported to frequently trigger drug hypersensitivity reactions. Such reactions are induced by inflammatory mediators such as cytokines and chemokines. The present study investigated whether levofloxacin, a fluoroquinolone, and loxoprofen, a propionic acid derivative, have the potential to induce immune-related gene expression in dendritic cell-like cell lines such as HL-60, K562, and THP-1, and immortalized keratinocytes such as HaCaT. The expression of IL-8, MCP-1, and TNFα messenger RNA (mRNA) was found to increase following treatment with levofloxacin or loxoprofen in HL-60 cells. In addition, these drugs increased the mRNA content of annexin A1, a factor related to keratinocyte necroptosis in patients with severe cutaneous adverse reactions. Inhibition studies using specific inhibitors of mitogen-activated protein (MAP) kinases and NF-κB suggest that the extracellular signal-regulated kinase (ERK) pathway is the pathway principally involved in the induction of cytokines and annexin A1 by levofloxacin, whereas the involvement of MAP kinases and NF-κB in the loxoprofen-induced gene expression of these factors may be limited. Fluoroquinolones and propionic acid derivatives that are structurally related to levofloxacin and loxoprofen, respectively, were also found to induce immune-related gene expression in HL-60 cells. Collectively, these results suggest that fluoroquinolones and propionic acid derivatives have the potential to induce the expression of immune-related factors and that an in vitro cell-based assay system to detect the immune-stimulating potential of systemic drugs might be useful for assessing the risk of drug hypersensitivity reactions.  相似文献   
994.
Candida albicans is a major invasive pathogen, and the development of strains resistant to conventional antifungal agents has been reported in recent years. We evaluated the antifungal activity of 44 compounds against Candida strains. Magnoflorine showed the highest growth inhibitory activity of the tested Candida strains, with a minimum inhibitory concentration (MIC) of 50 μg/mL based on microdilution antifungal susceptibility testing. Disk diffusion assay confirmed the antifungal activity of magnoflorine and revealed that this activity was stable over 3 days compared to those of berberine and cinnamaldehyde. Cytotoxicity testing showed that magnoflorine could potentially be used in a clinical setting because it didn’t have any toxicity to HaCaT cells even in 200 μg/mL of treatment. Magnoflorine at 50 μg/mL inhibited 55.91?±?7.17% of alpha-glucosidase activity which is required for normal cell wall composition and virulence of Candida albicans. Magnoflorine also reduced the formation of C. albicans’ biofilm. Combined treatment with magnoflorine and miconazole decreased the amount of miconazole required to kill various Candida albicans. Therefore, magnoflorine is a good candidate lead compound for novel antifungal agents.  相似文献   
995.
Mangroves are essential for maintaining local biodiversity and human well-being, and mangrove structure and functioning depend on the macrobenthos. Although exotic cordgrass, Spartina alterniflora, is an increasing threat to the mangrove wetlands (including the associated unvegetated shoals) of China, its effects on the macrobenthic fauna in such wetlands is poorly understood. The macrobenthic faunal communities were compared in (1) an Avicennia marina monoculture vs. an S. alterniflora-invaded A. marina stand (a mixture of A. marina and S. alterniflora) and in (2) an unvegetated shoal vs. an S. alterniflora-invaded shoal that had rapidly become an S. alterniflora monoculture in Zhanjiang, China. S. alterniflora invasion significantly increased plant density regardless of invaded habitat but significantly increased the contents of total carbon, organic matter, and total sulfur in the sediment only in the unvegetated shoal. The presence of S. alterniflora had little influence on indices of the macrobenthic faunal community in the A. marina monoculture, but significantly decreased the density and biomass of macrobenthic faunal community in the unvegetated shoal. These results indicate that the effects of S. alterniflora on the macrobenthic faunal community depend on which type of mangrove habitat is invaded. The composition of the macrobenthic faunal community was more similar between the invaded and non-invaded A. marina stand than between the invaded and non-invaded unvegetated shoal. Overall, the differences in the macrobenthic faunal community between invaded and non-invaded habitats were associated with increases in the sediment organic matter content and plant density.  相似文献   
996.
The present study determined the plant biomass (aboveground and belowground) of Salicornia brachiata from six different salt marshes distributed in Indian coastal area over one growing season (September 2014–May 2015). The nutrients concentration and their pools were estimated in plant as well as soil. Belowground biomass in S. brachiata was usually lower than the aboveground biomass. Averaged over different locations, highest biomass was observed in the month of March (2.1 t ha?1) followed by May (1.64 t ha?1), February (1.60 t ha?1), November (0.82 t ha?1) and September (0.05 t ha?1). The averaged aboveground to belowground ratio was 12.0. Aboveground and belowground biomass were negatively correlated with pH of soil, while positively with soil electrical conductivity. Further, there were positive relationships between organic carbon and belowground biomass; and available sodium and aboveground biomass. The nutrient pools in aboveground were always higher than to belowground biomass. Aboveground pools of carbon (543 kg ha?1), nitrogen (48 kg ha?1), phosphorus (4 kg ha?1), sodium (334 kg ha?1) and potassium (37 kg ha?1) were maximum in the month of March 2015. Bioaccumulation and translocation factors for sodium of S. brachiata were more than one showing tolerance to salinity and capability of phytoremediation for the saline soil.  相似文献   
997.

Introduction

Atherosclerotic diseases are the leading cause of death worldwide. Biomarkers of atherosclerosis are required to monitor and prevent disease progression. While mass spectrometry is a promising technique to search for such biomarkers, its clinical application is hampered by the laborious processes for sample preparation and analysis.

Methods

We developed a rapid method to detect plasma metabolites by probe electrospray ionization mass spectrometry (PESI-MS), which employs an ambient ionization technique enabling atmospheric pressure rapid mass spectrometry. To create an automatic diagnosis system of atherosclerotic disorders, we applied machine learning techniques to the obtained spectra.

Results

Using our system, we successfully discriminated between rabbits with and without dyslipidemia. The causes of dyslipidemia (genetic lipoprotein receptor deficiency or dietary cholesterol overload) were also distinguishable by this method. Furthermore, after induction of atherosclerosis in rabbits with a cholesterol-rich diet, we were able to detect dynamic changes in plasma metabolites. The major metabolites detected by PESI-MS included cholesterol sulfate and a phospholipid (PE18:0/20:4), which are promising new biomarkers of atherosclerosis.

Conclusion

We developed a remarkably fast and easy method to detect potential new biomarkers of atherosclerosis in plasma using PESI-MS.
  相似文献   
998.

Introduction

Subcellular compartmentalization enables eukaryotic cells to carry out different reactions at the same time, resulting in different metabolite pools in the subcellular compartments. Thus, mutations affecting the mitochondrial energy metabolism could cause different metabolic alterations in mitochondria compared to the cytoplasm. Given that the metabolite pool in the cytosol is larger than that of other subcellular compartments, metabolic profiling of total cells could miss these compartment-specific metabolic alterations.

Objectives

To reveal compartment-specific metabolic differences, mitochondria and the cytoplasmic fraction of baker’s yeast Saccharomyces cerevisiae were isolated and subjected to metabolic profiling.

Methods

Mitochondria were isolated through differential centrifugation and were analyzed together with the remaining cytoplasm by gas chromatography–mass spectrometry (GC–MS) based metabolic profiling.

Results

Seventy-two metabolites were identified, of which eight were found exclusively in mitochondria and sixteen exclusively in the cytoplasm. Based on the metabolic signature of mitochondria and of the cytoplasm, mutants of the succinate dehydrogenase (respiratory chain complex II) and of the FOF1-ATP-synthase (complex V) can be discriminated in both compartments by principal component analysis from wild-type and each other. These mitochondrial oxidative phosphorylation machinery mutants altered not only citric acid cycle related metabolites but also amino acids, fatty acids, purine and pyrimidine intermediates and others.

Conclusion

By applying metabolomics to isolated mitochondria and the corresponding cytoplasm, compartment-specific metabolic signatures can be identified. This subcellular metabolomics analysis is a powerful tool to study the molecular mechanism of compartment-specific metabolic homeostasis in response to mutations affecting the mitochondrial metabolism.
  相似文献   
999.

Introduction

Metabolomics is a promising approach for discovery of relevant biomarkers in cells, tissues, organs, and biofluids for disease identification and prediction. The field has mostly relied on blood-based biofluids (serum, plasma, urine) as non-invasive sources of samples as surrogates of tissue or organ-specific conditions. However, the tissue specificity of metabolites pose challenges in translating blood metabolic profiles to organ-specific pathophysiological changes, and require further downstream analysis of the metabolites.

Objectives

As part of this project, we aim to develop and optimize an efficient extraction protocol for the analysis of kidney tissue metabolites representative of key primate metabolic pathways.

Methods

Kidney cortex and medulla tissues of a baboon were homogenized and extracted using eight different extraction protocols including methanol/water, dichloromethane/methanol, pure methanol, pure water, water/methanol/chloroform, methanol/chloroform, methanol/acetonitrile/water, and acetonitrile/isopropanol/water. The extracts were analyzed by a two-dimensional gas chromatography time-of-flight mass-spectrometer (2D GC–ToF-MS) platform after methoximation and silylation.

Results

Our analysis quantified 110 shared metabolites in kidney cortex and medulla tissues from hundreds of metabolites found among the eight different solvent extractions spanning low to high polarities. The results revealed that medulla is metabolically richer compared to the cortex. Dichloromethane and methanol mixture (3:1) yielded highest number of metabolites across both the tissue types. Depending on the metabolites of interest, tissue type, and the biological question, different solvents can be used to extract specific groups of metabolites.

Conclusion

This investigation provides insights into selection of extraction solvents for detection of classes of metabolites in renal cortex and medulla, which is fundamentally important for identification of prognostic and diagnostic metabolic kidney biomarkers for future therapeutic applications.
  相似文献   
1000.

Background

Population-based biorepositories are important resources, but sample handling can affect data quality.

Objective

Identify metabolites of value for clinical investigations despite extended postcollection freezing delays, using protocols representing a California mid-term pregnancy biobank.

Methods

Blood collected from non-pregnant healthy female volunteers (n?=?20) underwent three handling protocols after 30 min clotting at room temperature: (1) ideal—samples frozen (??80 °C) within 2 h of collection; (2) delayed freezing—samples held at room temperature for 3 days, then 4 °C for 9 days, the median times for biobank samples, and then frozen; (3) delayed freezing with freeze–thaw—the delayed freezing protocol with a freeze–thaw cycle simulating retrieved sample sub-aliquoting. Mass spectrometry-based untargeted metabolomic analyses of primary metabolism and complex lipids and targeted profiling of oxylipins, endocannabinoids, ceramides/sphingoid-bases, and bile acids were performed. Metabolite concentrations and intraclass correlation coefficients (ICC) were compared, with the ideal protocol as the reference.

Results

Sixty-two percent of 428 identified compounds had good to excellent ICCs, a metric of concordance between measurements of samples handled with the different protocols. Sphingomyelins, phosphatidylcholines, cholesteryl esters, triacylglycerols, bile acids and fatty acid diols were the least affected by non-ideal handling, while sugars, organic acids, amino acids, monoacylglycerols, lysophospholipids, N-acylethanolamides, polyunsaturated fatty acids, and numerous oxylipins were altered by delayed freezing. Freeze–thaw effects were assay-specific with lipids being most stable.

Conclusions

Despite extended post-collection freezing delays characteristic of some biobanks of opportunistically collected clinical samples, numerous metabolomic compounds had both stable levels and good concordance.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号