首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   5篇
  2018年   2篇
  2013年   2篇
  2012年   3篇
  2011年   7篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
  1959年   2篇
  1958年   4篇
  1957年   2篇
  1956年   5篇
  1955年   1篇
  1954年   2篇
  1953年   2篇
  1952年   3篇
  1951年   3篇
  1950年   1篇
  1948年   1篇
  1946年   1篇
排序方式: 共有122条查询结果,搜索用时 31 毫秒
101.
102.
103.
1. The growth rate hypothesis predicts positive relationships among growth rate (μ), body RNA (%RNA of dry mass) and body P (%P of dry mass) contents. 2. We tested this within‐ and across‐species by growing five species/clones of Daphnia (Daphnia magna, Daphnia pulex, Daphnia galeata and two isolates of Daphnia pulicaria) with different combinations of food quantity and stoichiometric food quality. 3. Within each species, positive correlations among μ, %RNA and %P were seen and across species there was a strong association between%RNA and %P, consistent with the growth rate hypothesis. However, coupling of growth to %RNA and to %P differed for different species. In particular, the %RNA–μ and %P–μ relationships had similar slopes but considerably different y‐intercepts (i.e.%P or %RNA at zero growth), with D. pulicaria and D. galeata having higher intercepts than D. magna and especially D. pulex. As a result of these displacements, the relative rankings of the species on the basis of %P and %RNA did not correspond to their rankings based on μ. 4. These findings suggest that within a narrow clade (e.g. the daphnids), interspecific differences in body P content may reflect not growth rate‐related RNA allocation but instead the amount of RNA required for support of maintenance processes.  相似文献   
104.
Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV‐A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non‐maize‐adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3–10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV‐A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV‐B to MSV‐K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single‐component, circular, single‐stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38‐nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32‐kDa capsid protein. Particles are generally stable in buffers of pH 4–8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak‐resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv‐1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small‐effect resistance genes together with msv‐1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈 http://www.mcb.uct.ac.za/MSV/mastrevirus.htm 〉; 〈 http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm 〉.  相似文献   
105.
106.
A study of large bodies in Azotobacter agile   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   
107.
108.
Exposure to light brings about a fall in the plasmolyticallydetermined osmotic pressure of the cells of the plumular hookof Vicia to about half the ‘dark’ value. Analysesand conductivity measurements show that light causes a smallrise in osmotically active solutes, which is confirmed by cryoscopicmeasurements. The contradiction lies in an abnormally high ‘dark’plasmolytic value, which is not attributable to entry of theplasmolysing solute; it is tentatively suggested that this isan imbibition phenomenon, and that the effect of light is todecrease the affinity for water by promoting a rise in molecularweight of the cell proteins.  相似文献   
109.
The grass Alloteropsis semialata (R.Br.) Hitchcock is uniquein that both Kranz and non-Kranz leaf anatomy has been reportedin this species. The present study investigates Kranz formsof A. semialata collected from a single ecological niche. Theseplants exhibit morphological and anatomical differences withrespect to leaf area, stomatal size and stomatal distribution.Carbon dioxide and water exchange measurements in the two formsshow the expected pattern of higher photosynthetic rate andhigher water utilization efficiency associated with Kranz anatomy.No intermediate physiological response or anatomical form wasobserved in this sample. Alloteropsis semialata (R.Br.) Hitchcock, C3 photosynthetic, C4 photosynthesis, water utilization, leaf anatomy, Kranz anatomy  相似文献   
110.
Abstract Bird surveys were conducted to assess the impact of a severe cyclone on bird communities in three fragments of the endangered rainforest Type 5b on the Atherton Tablelands of far north Queensland. Bird communities were surveyed using timed area searches in three sites in each of the three fragments and were undertaken prior to and following Tropical Cyclone Larry. Cyclone Larry caused short‐term changes in the abundance of some species of birds in Type 5b rainforest fragments. Two weeks after the storm, in two of three fragments surveyed, abundance of the frugivorous wompoo fruit‐dove (Ptilinopus magnificus) and figbird (Sphecotheres viridis) had decreased while the omnivorous Macleay's honeyeater (Xanthotis macleayana) and Lewin's honeyeater (Meliphaga lewinii) decreased in abundance in all three locations. Most insectivorous species increased in some sites and decreased in others following Cyclone Larry. Rapid recovery of bird communities to approximately their pre‐cyclone state after only 7 months appeared to reflect the capacity of species to either modify their foraging behaviour, switch foods, or to move within or between fragments or to other food sources in the landscape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号