首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   62篇
  2021年   2篇
  2018年   3篇
  2017年   2篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2009年   4篇
  2008年   8篇
  2007年   12篇
  2006年   6篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2001年   3篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   6篇
  1974年   1篇
  1973年   6篇
  1972年   8篇
  1971年   1篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1967年   3篇
  1966年   4篇
  1965年   1篇
  1964年   3篇
  1963年   2篇
  1961年   1篇
  1958年   1篇
排序方式: 共有205条查询结果,搜索用时 46 毫秒
21.
Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P < 0.05). Upregulation of HO-1 expression by intermittent administration of cobalt protoporphyrin, an inducer of HO-1 protein and activity, resulted in a robust increase in EC-SOD but no significant change in Cu-Zn-SOD. Administration of tin mesoporphyrin, an inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.  相似文献   
22.
Vascular smooth muscle (VSM) derived from pulmonary arteries generally contract to hypoxia, whereas VSM from systemic arteries usually relax, indicating the presence of basic oxygen-sensing mechanisms in VSM that are adapted to the environment from which they are derived. This review considers how fundamental processes associated with the generation of reactive oxygen species (ROS) by oxidase enzymes, the metabolic control of cytosolic NADH, NADPH and glutathione redox systems, and mitochondrial function interact with signaling systems regulating vascular force in a manner that is potentially adapted to be involved in Po2 sensing. Evidence for opposing hypotheses of hypoxia, either decreasing or increasing mitochondrial ROS, is considered together with the Po2 dependence of ROS production by Nox oxidases as sensors potentially contributing to hypoxic pulmonary vasoconstriction. Processes through which ROS and NAD(P)H redox changes potentially control interactive signaling systems, including soluble guanylate cyclase, potassium channels, and intracellular calcium are discussed together with the data supporting their regulation by redox in responses to hypoxia. Evidence for hypothesized potential differences between systemic and pulmonary arteries originating from properties of mitochondrial ROS generation and the redox sensitivity of potassium channels is compared with a new hypothesis in which differences in the control of cytosolic NADPH redox by the pentose phosphate pathway results in increased NADPH and Nox oxidase-derived ROS in pulmonary arteries, whereas lower levels of glucose-6-phosphate dehydrogenase in coronary arteries may permit hypoxia to activate a vasodilator mechanism controlled by oxidation of cytosolic NADPH.  相似文献   
23.
Hypoxic pulmonary vasoconstriction (HPV) is a physiological response to a decrease in airway O2 tension, but the underlying mechanism is incompletely understood. We studied the contribution of glucose-6-phosphate dehydrogenase (Glc-6-PD), an important regulator of NADPH redox and production of reactive oxygen species, to the development of HPV. We found that hypoxia (95% N2, 5% CO2) increased contraction of bovine pulmonary artery (PA) precontracted with KCl or serotonin. Depletion of extracellular glucose reduced NADPH, NADH, and HPV, substantiating the idea that glucose metabolism and Glc-6-PD play roles in the response of PA to hypoxia. Our data also show that inhibition of glycolysis and mitochondrial respiration (indicated by an increase in NAD+ and decrease in the ATP-to-ADP ratio) by hypoxia, or by inhibitors of pyruvate dehydrogenase or electron transport chain complexes I or III, increased generation of reactive oxygen species, which in turn activated Glc-6-PD. Inhibition of Glc-6-PD decreased Ca2+ sensitivity to the myofilaments and diminished Ca2+-independent and -dependent myosin light chain phosphorylation otherwise increased by hypoxia. Silencing Glc-6-PD expression in PA using a targeted small interfering RNA abolished HPV and decreased extracellular Ca2+-dependent PA contraction increased by hypoxia. Similarly, Glc-6-PD expression and activity were significantly reduced in lungs from Glc-6-PDmut(−/−) mice, and there was a corresponding reduction in HPV. Finally, regression analysis relating Glc-6-PD activity and the NADPH-to-NADP+ ratio to the HPV response clearly indicated a positive linear relationship between Glc-6-PD activity and HPV. Based on these findings, we propose that Glc-6-PD and NADPH redox are crucially involved in the mechanism of HPV and, in turn, may play a key role in increasing pulmonary arterial pressure, which is involved in the development of pulmonary hypertension.  相似文献   
24.
25.
Monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) in rats is preceded by an inflammatory response, progressive endothelial cell membrane disruption, reduction in the expression of caveolin-1, and reciprocal activation of STAT3 (PY-STAT3). Superoxide and NF-kappaB have been implicated in PAH. To evaluate the role of caveolin-1, PY-STAT3 activation, and superoxide in PAH, MCT-injected rats were treated daily with pyrrolidine dithiocarbamate (PDTC; starting on days 1, 3, and 14 x 2 wk), an inhibitor of inflammation and NF-kappaB activation. Hemodynamic data, the expression of inhibitory (I)-kappaBalpha, caveolin-1, and Tie2 (a membrane protein), activation of PY-STAT3 and NF-kappaB, and superoxide chemiluminescence were examined. Rats developed progressive PAH at 2 wk post-MCT. There was progressive reduction in the expression of caveolin-1, Tie2, and activation of PY-STAT3 in the lungs. Reduction in I-kappaBalpha expression was present at 2 and 4 wk post-MCT. Superoxide chemiluminescence and NF-kappaB activation were observed only at 2 wk post-MCT and both decreased by 4 wk post-MCT despite progressive PAH. PDTC (starting on days 1 and 3) rescued caveolin-1 and Tie2, reversed MCT-induced PY-STAT3 activation, and attenuated PAH. In addition, PDTC restored I-kappaBalpha expression and reduced superoxide chemiluminescence at 2 wk but did not inhibit NF-kappaB activation despite attenuation of PAH. PDTC had no effect on established PAH. Increased superoxide chemiluminescence and NF-kappaB activation appear to be a transient phenomenon in the MCT model. Thus the disruption of endothelial cell membrane integrity resulting in caveolin-1 loss and reciprocal activation of PY-STAT3 plays a key role in the MCT-induced PAH.  相似文献   
26.
Increase in colonic methanogens and total anaerobes in aging rats   总被引:1,自引:0,他引:1  
Methanogens are present in the colons of our local Wistar rat colony. We studied the changes in concentrations of their fecal methanogenic and nonmethanogenic bacteria with age as a model of the development of these communities in humans. We found that the predominant methanogen in the rats is a Methanobrevibacter species. The log of the concentration of total anaerobes increased from 9.8/g (dry weight) at 3.0 weeks of age (shortly after weaning) to 10.7/g (dry weight) at 96 weeks (shortly before the end of the life span). In contrast, the log concentration of methanogens increased from 5.5 to 9/g (dry weight) during the same time period. Therefore, methanogens increased as a percentage of the total anaerobes from 0.005% at 3.0 weeks to 2.0% at 96 weeks. About 12 doublings of the methanogenic population and 3.3 doublings of the nonmethanogenic population took place from weaning until death. The slow increase in the ratio of methanogens to total anaerobes with age followed the same pattern in cecal contents as found in feces. There were no relationships between animal weights or fecal outputs and the increase in total anaerobe and methanogen concentrations in feces. A possible explanation for the slow increase in the Methanobrevibacter species in Wistar rats with age is a gradual shifting of the use of electrons from the reduction of CO2 to acetate by acetogens to the reduction of CO2 to CH4. The results provide the first evidence for an age-related change in the nonmethanogenic bacteria of the colon and supporting microbiological evidence for physiological studies that have shown age-related increases in colonic methane production in humans.  相似文献   
27.
Total anaerobic bacteria and Methanobrevibacter smithii populations were enumerated in fecal specimens from two individuals over 10- and 13-month periods. The ratio of M. smithii to total anaerobic count varied between the individuals, but it was a relatively constant proportion of the large-bowel microbial flora within each individual. Neither a barium enema examination of one subject nor a radical change in the diet of the other had any long-term effect on the methanogen populations.  相似文献   
28.
29.
Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat‐insulin‐promoter‐Cre (RIP‐Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT. Genetic ablation of APPL2 in RIP‐Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP‐Cre neurons, inactivation of VMH AMPK, or treatment with a β3‐adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP‐Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP‐Cre neurons, in which the APPL2–AMPK signaling axis is crucial for this defending mechanism to cold and obesity.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号