首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1810篇
  免费   215篇
  2025篇
  2021年   25篇
  2018年   16篇
  2016年   21篇
  2015年   42篇
  2014年   31篇
  2013年   51篇
  2012年   74篇
  2011年   68篇
  2010年   42篇
  2009年   41篇
  2008年   42篇
  2007年   58篇
  2006年   49篇
  2005年   49篇
  2004年   48篇
  2003年   74篇
  2002年   62篇
  2001年   59篇
  2000年   56篇
  1999年   43篇
  1997年   16篇
  1996年   20篇
  1995年   16篇
  1994年   18篇
  1993年   20篇
  1992年   46篇
  1991年   47篇
  1990年   60篇
  1989年   59篇
  1988年   53篇
  1987年   41篇
  1986年   44篇
  1985年   37篇
  1984年   33篇
  1983年   26篇
  1982年   21篇
  1981年   31篇
  1980年   24篇
  1979年   44篇
  1978年   30篇
  1977年   37篇
  1976年   32篇
  1975年   38篇
  1974年   18篇
  1973年   25篇
  1972年   27篇
  1971年   15篇
  1970年   15篇
  1967年   15篇
  1966年   18篇
排序方式: 共有2025条查询结果,搜索用时 15 毫秒
951.
Thromboembolic disease is a leading cause of morbidity and mortality worldwide. In the last several years there have been a number of studies attempting to identify mechanisms that stop thrombus growth. This paper identifies a novel mechanism related to formation of a fibrin cap. In particular, protein transport through a fibrin network, an important component of a thrombus, was studied by integrating experiments with model simulations. The network permeability and the protein diffusivity were shown to be important factors determining the transport of proteins through the fibrin network. Our previous in vivo studies in mice have shown that stabilized non-occluding thrombi are covered by a fibrin network (‘fibrin cap’). Model simulations, calibrated using experiments in microfluidic devices and accounting for the permeable structure of the fibrin cap, demonstrated that thrombin generated inside the thrombus was washed downstream through the fibrin network, thus limiting exposure of platelets on the thrombus surface to thrombin. Moreover, by restricting the approach of resting platelets in the flowing blood to the thrombus core, the fibrin cap impaired platelets from reaching regions of high thrombin concentration necessary for platelet activation and limited thrombus growth. The formation of a fibrin cap prevents small thrombi that frequently develop in the absence of major injury in the 60000 km of vessels in the body from developing into life threatening events.  相似文献   
952.
Loss of heterozygosity (LOH) at tumor suppressor loci is a major contributor to cancer initiation and progression. Both deletions and mitotic recombination can lead to LOH. Certain chromosomal loci known as common fragile sites are susceptible to DNA lesions under replication stress, and replication stress is prevalent in early stage tumor cells. There is extensive evidence for deletions stimulated by common fragile sites in tumors, but the role of fragile sites in stimulating mitotic recombination that causes LOH is unknown. Here, we have used the yeast model system to study the relationship between fragile site instability and mitotic recombination that results in LOH. A naturally occurring fragile site, FS2, exists on the right arm of yeast chromosome III, and we have analyzed LOH on this chromosome. We report that the frequency of spontaneous mitotic BIR events resulting in LOH on the right arm of yeast chromosome III is higher than expected, and that replication stress by low levels of polymerase alpha increases mitotic recombination 12-fold. Using single-nucleotide polymorphisms between the two chromosome III homologs, we mapped the locations of recombination events and determined that FS2 is a strong hotspot for both mitotic reciprocal crossovers and break-induced replication events under conditions of replication stress.  相似文献   
953.

Settings

Kerala State, India has reported the greatest dual burden of Tuberculosis (TB) and Diabetes Mellitus (DM). Malappuram district in Kerala has monitored and recorded DM status and its control from 2010 under Revised National Tuberculosis Control Program (RNTCP).

Objectives

To assess, under programme conditions, comprehensiveness of recording DM status among TB cases and the TB treatment outcomes among DM patients (disaggregated by glycemic control) and compare with-non DM patients.

Design

This retrospective record review included 3,116TB patients from April 2010 to September 2011.DM was defined as per international guidelines and TB treatment outcomes were categorized as favourable(cured and treatment completed) and unfavourable(death, default, failure and transfer out). Relative Risk (RR) and 95% confidence intervals(CI) were calculated to assess the risk of unfavourable outcomes.

Results

DM status was recorded in 90% of TB cases and 667 (24%) had DM. 17% of DM patients and 23% of patients with unknown DM status had unfavourable outcomes but this difference was not statistically significant. Unadjusted RR for poor glycemic control or unknown control status for unfavourable outcome were (2.00; 95% CI 0.97–4.13) and (2.14; 95% CI 1.11–4.13).

Conclusion

This study could not confirm an adverse association between DM or its control during treatment and the course of response to TB treatment.DM screening in TB cases and recording of DM care needs to be improved to enable more conclusive evidence.  相似文献   
954.
In senile osteoporosis the balance of adipogenesis and osteoblastogenesis in bone marrow stromal cells (BMSCs) is disrupted so that adipogenesis is increased with respect to osteoblastogenesis, and as a result, bone mass is decreased. While the molecular mechanisms controlling the balance between osteoblastogenesis and adipogenesis are of great interest, the exact nature of the signals regulating this process remains to be determined.  相似文献   
955.
The tumor suppressor INPP4B is an important regulator of phosphatidyl-inositol signaling in the cell. Reduced INPP4B expression is associated with poor outcomes for breast, prostate, and ovarian cancer patients. INPP4B contains a CX5R catalytic motif characteristic of dual-specificity phosphatases, such as PTEN. Lipid phosphatase activity of INPP4B has previously been described. In this report we show that INPP4B can dephosphorylate para-nitrophenyl phosphate (pNPP) and 6,8-difluoro-4-methylumbelliferyl (DiFMUP), synthetic phosphotyrosine analogs, suggesting that INPP4B has protein tyrosine phosphatase (PTP) activity. Using mutagenesis, we examined the functional role of specific amino acids within the INPP4B C842KSAKDR catalytic site. The K843M mutant displayed increased pNPP hydrolysis, the K846M mutant lost lipid phosphatase activity with no effect on PTP activity, and the D847E substitution ablated PTP activity and significantly reduced lipid phosphatase activity. Further, we show that INPP4B but not PTEN is able to reduce tyrosine phosphorylation of Akt1 and both the lipid and PTP activity of INPP4B likely contribute to the reduction of Akt1 phosphorylation. Taken together our data identified key residues in the INPP4B catalytic domain associated with lipid and protein phosphatase activities and found a robust downstream target regulated by INPP4B but not PTEN.  相似文献   
956.
Potent and selective S1P3 receptor (S1P3-R) agonists may represent important proof-of-principle tools used to clarify the receptor biological function and assess the therapeutic potential of the S1P3-R in cardiovascular, inflammatory and pulmonary diseases. N,N-Dicyclohexyl-5-propylisoxazole-3-carboxamide was identified by a high-throughput screening of MLSMR library as a promising S1P3-R agonist. Rational chemical modifications of the hit allowed the identification of N,N-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide, a S1P3-R agonist endowed with submicromolar activity and exquisite selectivity over the remaining S1P1,2,4,5-R family members. A combination of ligand competition, site-directed mutagenesis and molecular modeling studies showed that the N,N-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide is an allosteric agonist and binds to the S1P3-R in a manner that does not disrupt the S1P3-R–S1P binding. The lead molecule herein disclosed constitutes a valuable pharmacological tool to explore the molecular basis of the receptor function, and provides the bases for further rational design of more potent and drug-like S1P3-R allosteric agonists.  相似文献   
957.
Angiogenesis plays an important role in physiological bone growth and remodeling, as well as in pathological bone disorders such as fracture repair, osteonecrosis, and tumor metastasis to bone. Vascularization is required for bone remodeling along the endosteal surface of trabecular bone or Haversian canals within the cortical bone, as well as the homeostasis of the cartilage-subchondral bone interface. Angiogenic factors, produced by cells from a basic multicellular unit (BMU) within the bone remodeling compartment (BRC) regulate local endothelial cells and pericytes. In this review, we discuss the expression and function of angiogenic factors produced by osteoclasts, osteoblasts and osteocytes in the BMU and in the cartilage-subchondral bone interface. These include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), BMP7, receptor activator of NF-κB ligand (RANKL) and epidermal growth factor (EGF)-like family members. In addition, the expression of EGFL2, EGFL3, EGFL5, EGFL6, EGFL7, EGFL8 and EGFL9 has been recently identified in the bone local environment, giving important clues to their possible roles in angiogenesis. Understanding the role of angiogenic factors in the bone microenvironment may help to develop novel therapeutic targets and diagnostic biomarkers for bone and joint diseases, such as osteoporosis, osteonecrosis, osteoarthritis, and delayed fracture healing.  相似文献   
958.
Plasma membrane (PM) Na+, K+-ATPase, plays crucial roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically bind to the Na+, K+-ATPase and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds, synthesized in and released from the adrenal gland, are considered a new family of steroid hormones. Previous studies showed that ouabain induces slow Ca2+ oscillations in COS-7 cells by enhancing the interactions between Na+, K+-ATPase, inositol 1,4,5-trisphosphate receptor (IP3R) and Ankyrin B (Ank-B) to form a Ca2+ signaling micro-domain. The activation of this micro-domain, however, is independent of InsP3 generation. Thus, the mechanism underlying the induction of these slow Ca2+ oscillations remained largely unclear. We now show that other CS, such as bufalin, can also induce Ca2+ oscillations. These oscillations depend on extracellular Ca2+ concentrations [Ca2+]out and are inhibited by Ni2+. Furthermore, we found that these slow oscillations are Na+out dependent, abolished by Na+/Ca2+ exchanger1 (NCX1)-specific inhibitors and markedly attenuated by NCX1 siRNA knockdown. Based on these results, a model is presented for the CS-induced slow Ca2+ oscillations in COS-7 cells.  相似文献   
959.
Insulin-like growth factor-binding protein 2 (IGFBP-2) is a member of a family of six highly conserved IGFBPs that are carriers for the insulin-like growth factors (IGFs). IGFBP-2 levels rise during rapid neonatal growth and at the time of peak bone acquisition. In contrast, Igfbp2(-/-) mice have low bone mass accompanied by reduced osteoblast numbers, low bone formation rates, and increased PTEN expression. In the current study, we postulated that IGFBP-2 increased bone mass partly through the activity of its heparin-binding domain (HBD). We synthesized a HBD peptide specific for IGFBP-2 and demonstrated in vitro that it rescued the mineralization phenotype of Igfbp2(-/-) bone marrow stromal cells and calvarial osteoblasts. Consistent with its cellular actions, the HBD peptide ex vivo stimulated metacarpal periosteal expansion. Furthermore, administration of HBD peptide to Igfbp2(-/-) mice increased osteoblast number, suppressed marrow adipogenesis, restored trabecular bone mass, and reduced bone resorption. Skeletal rescue in the Igfbp2(-/-) mice was characterized by reduced PTEN expression followed by enhanced Akt phosphorylation in response to IGF-I and increased β-catenin signaling through two mechanisms: 1) stimulation of its cytosolic accumulation and 2) increased phosphorylation of serine 552. We conclude that the HBD peptide of IGFBP-2 has anabolic activity by activating IGF-I/Akt and β-catenin signaling pathways. These data support a growing body of evidence that IGFBP-2 is not just a transport protein but rather that it functions coordinately with IGF-I to stimulate growth and skeletal acquisition.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号