首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   23篇
  2013年   25篇
  2012年   3篇
  2011年   4篇
  2010年   12篇
  2009年   16篇
  2008年   11篇
  2007年   13篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1987年   6篇
  1986年   4篇
  1984年   3篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1973年   3篇
  1972年   4篇
  1971年   5篇
  1959年   4篇
  1958年   3篇
  1957年   5篇
  1956年   8篇
  1955年   8篇
  1954年   12篇
  1953年   8篇
  1952年   9篇
  1951年   9篇
  1950年   5篇
  1949年   3篇
  1948年   2篇
  1946年   2篇
排序方式: 共有291条查询结果,搜索用时 31 毫秒
21.
22.
23.
24.
25.
26.
27.
28.
We developed primer sequences for five polymorphic microsatellite loci in the tropical ant‐plant genus Macaranga (Euphorbiaceae). Population genetic parameters were determined on the basis of 30 individuals from each of two Macaranga species in Borneo. Allele numbers per locus ranged from three to 13. Expected and observed heterozygosities ranged from 0.160 to 0.850 and from 0.130 to 0.700, respectively. Four of the five primer pairs cross‐amplify polymorphic PCR products in a wide range of Macaranga species.  相似文献   
29.
1. The aim of this study was to estimate patchiness in biomass and in the internal nutrient status of benthic algae on hard substrata (epilithon) in Lake Erken, Sweden, over different levels of distance, depth and time. Knowledge of the sources and scale of patchiness should enable more precise estimation of epilithic biomass and nutrient status for the entire lake. We focused on the horizontal scale, about which little is known. 2. We sampled epilithon by SCUBA diving and used a hierarchical sampling design with different horizontal scales (cm, dm, 10 m, km) which were nested in two temporal scales (within and between seasons). We also compared two successive years and three sampling depths (0, 1 and 4 m). Biomass was measured as particulate carbon and chlorophyll a (Chl a) and internal nutrient status as carbon : nitrogen : phosphorus (C : N : P) ratios and as specific alkaline phosphatase activity (APA). 3. Horizontal variation accounted for 60–80 and 7–70% of the total variation in biomass and in nutrient status, respectively, at all depths and during both years. Both small and large scales accounted for significant variation. We also found variation with time and depth. Biomass increased in autumn after a summer minimum, and the within‐season variation was very high. The lowest biomass was found at 0 m depth. Both N and P limitation occurred, being higher in 1996 than in 1997 and decreased with depth. 4. As a consequence, any sampling design must address variation with distance, depth and time when estimating biomass or nutrient limitation of benthic algae for an entire lake. Based on this analysis, we calculated an optimal sampling design for detecting change in the epilithic biomass of Lake Erken between different sampling days. It is important to repeat the sampling as often as possible, but also the large scales (10 m and km) and the dm scale should be replicated. Using our calculations as an example, and after a pilot study, an optimal sampling design can be computed for various objectives and for any lake. 5. Short‐term impact of the wind, light and nutrient limitation, and grazing, might be important in regulating the biomass and nutrient status of epilithic algae in Lake Erken. Patchiness in the nutrient status of algae was not coupled to the patchiness of biomass, indicating that internal nutrients and biomass were regulated by different factors.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号