首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   817篇
  免费   149篇
  国内免费   4篇
  970篇
  2023年   4篇
  2022年   13篇
  2021年   30篇
  2020年   20篇
  2019年   40篇
  2018年   51篇
  2017年   23篇
  2016年   27篇
  2015年   54篇
  2014年   53篇
  2013年   44篇
  2012年   60篇
  2011年   66篇
  2010年   52篇
  2009年   31篇
  2008年   32篇
  2007年   26篇
  2006年   28篇
  2005年   32篇
  2004年   31篇
  2003年   31篇
  2002年   18篇
  2001年   12篇
  2000年   16篇
  1999年   11篇
  1998年   3篇
  1997年   8篇
  1996年   4篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   7篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   3篇
  1979年   8篇
  1977年   4篇
  1976年   3篇
  1975年   8篇
  1974年   10篇
  1973年   5篇
  1968年   2篇
排序方式: 共有970条查询结果,搜索用时 0 毫秒
951.
Electron microscopic study of an 18-day-old planulae and primary polyps of the sea pen, Ptilosarcus gurneyi, reveals 14 cell types: sustentacular cell A, sustentacular cell B, nerve cell, sensory cell, cnidoblast, interstitial cell, five types of gland cell (A, B, C, D and E), amoebocyte, style cell and endodermal cell. Of these, 9 are found in the planula, 12 in polyps and 7 are common to both stages. The fine structure of all cell types is described. Since the planulae and polyps in this study were identical in age of development, the gaining and losing of certain types of cells in the polyp are attributed to changes associated with settlement and metamorphosis. Modifications of the seven common cell types during metamorphosis can also be attributed to the change of life style from pelagic to benthic.  相似文献   
952.
The P4 variant of Dictyostelium discoideum is characterized by the production of fruiting structures in which the overall proportion of stalk to spore material is increased, relative to the wild type. The altered morphology of the mutant is due to increased sensitivity to cyclic AMP which promotes stalk cell differentiation. In the presence of 10-4 M-cyclic AMP the entire population of P4 amoebae forms clumps of stalk cells on the surface of the dialysis membrane support. Measurement of changes in activity of a range of developmentally-regulated enzymes during the development of P4 in the presence and absence of cyclic AMP has allowed us to identify three classes of enzyme: (i) Those, such as beta-glucosidase II, trehalose-6-phosphate synthetase and uridine diphosphogalactose-4-epimerase, which are required for the production of spores. (ii) Enzymes, primarily but perhaps not exclusively, required during stalk cell formation. Typical of these are N-acetylglucosaminidase and alkaline phosphatase. (iii) General enzymes, such as threonine dehydrase, alpha-mannosidase and uridine diphosphoglucose pyrophyosphorylase, which are present inboth pre-stalk and pre-spore cells and appear to be necessary for the development of both cell types.  相似文献   
953.
954.
955.
956.
Fine structural study indicates that the neuromuscular system of stage I polyps of Aurelia aurita is exclusively ectodermal. The three major muscle fields are the radial muscles of the oral disc, the longitudinal muscles of the tentacles, and the muscle cords of the septae and the column; the muscle fields are in physical continuity at the peristomial pits and share a common innervation and type of myofibril. The myofibril is striated in the tentacle base, in the outer oral disc, and in the upper part of the muscle cord; it grades into a smooth muscle toward the tentacle tip, the mouth, and the lower part of the cord. There is a fourth field of longitudinal smooth muscle in the pharynx. The nervous system consists of an epithelial sensory cell in the tentacle and a single type of neuron found in the subepithelial layer of the tentacle, oral disc, and muscle cord. The lack of gap junctions suggests that there is no nonnervous conduction system. The subepithelial layer also contains three types of fibers and a type of soma which cannot be characterized as neuronal. The soma is identified as the “neurosecretory cell” described in Chrysaora. The absence of neuromuscular elements in the column and stolon distinguishes the Aurelia aurita collected from Washington, USA, from English polyps previously described.  相似文献   
957.
The epidermis of the doliolaria larva of the Florometra serratissima is differentiated into distinct structures including an apical organ, adhesive pit, ganglion, ciliary bands, nerve plexus, and vestibular invagination. All these structures possess unique cell-types, suggesting that they are functionally specialized in the larva, except the vestibular invagination that becomes the postmetamorphic stomodeum. The epidermis also contains yellow cells, amoeboid-like cells, and secretory cells. The enteric sac, hydrocoel, axocoel, and somatocoels have differentiated but are probably not functional in the doliolaria stage. Mesenchymal cells, around the enteric sac and coeloms, appear to be actively secreting the endoskeleton and connective tissue fibers. The nervous system is composed of a nerve plexus, ganglion, and sensory receptor cells in the apical organ. The apical organ is a larval specialization of the anterior end; the ganglion is located in the base of the epidermis at the anterior dorsal end of the larva. The nerve plexus underlies most of the epidermis, although it is more prominent in the anterior region. Here, processes from sensory receptor cells of the apical organ, as well as those from nerve cells, contribute to the plexus. These processes contain one or a combination of organelles including vesicles, vacuoles, microtubules, and mitochondria. The configuration of glyoxylic acid-induced fluorescence, revealing catecholamine activity, correlates to the apical organ, nerve cells, and nerve plexus. Morphological evidence suggests that the nervous system may function in initiation and control of settlement, attachment, and metamorphosis. The crinoid larval nervous system is discussed and compared to that found in other larval echinoderms.  相似文献   
958.
959.
Summary Waste sperm and spermatozeugmata in the seminal vesicle of Littorina scutulata are phagocytised either by cell buds (large vesicles given off from the epithelial cells) or by the epithelial cells themselves. Cell buds containing sperm, are in turn engulfed by epithelial cells. In both cases, heterophagic vacuoles are formed inside the cell and subsequently the vacuoles are fused with primary lysosomes or lysosomal derivatives to become secondary lysosomes. Throughout this process the sperm are being digested. The second lysosome transforms further to telolysosome and finally to residual body when the sperm is completely digested.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号