首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  36篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1969年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
21.
22.
牛科(哺乳纲:偶蹄目)动物与食物有关的适应形态模式   总被引:1,自引:0,他引:1  
利用逐步分辨分析方法(Stepwise discriminant analysis,SCDA)检测了广义牛科动物的颅齿部结构,这些结构特征可以作为采食行为生态适应特征。在本研究中,测量了72种广义牛科动物的28个颅齿部结构。逐步分辨分析方法得出了6种采食方式适应类型:一般粗食者、新鲜禾草粗食者、开阔生境混合型采食者、精食者、郁闭生境混合型采食者、食果者。用103个标本检测了分辨指标的预测能力,所用标本为缺损标本,大多数缺少一项或多项结构。从这些标本获得的分辨函数的平均预测能力为94%,比用72种广义牛科动物标本建立的分辨函数的平均预测能力(98%)低一些。从一个颅齿部结构小样本建立的分辨函数可以用于考古发掘物中不完整标本的研究。这些指标与用颅下结构测量建立的运动能力和生境选择的指标相结合,可以推断古牛科动物的个体生态学以及古环境重建。  相似文献   
23.
Current theory predicts that larger‐bodied snakes not only consume larger prey (compared with smaller individuals), but may also have a different range of prey available to them due to their thermal biology. It has been argued that smaller individuals, with lower thermal inertia (i.e. faster cooling rates at nightfall when air temperature falls and basking opportunities are limited), may be thermally restricted to foraging and hunting during the day on diurnally active prey, and have reduced capacity to hunt crepuscular and nocturnal prey species. This predictive theory was investigated by way of dietary analysis, assessment of thermal biology and thermoregulation behaviour in an ambush forager, the south‐west carpet python (Morelia spilota imbricata, Pythonidae). Eighty‐seven scats were collected from 34 individual pythons over a 3‐year radiotelemetry monitoring study. As predicted by gape size limitation, larger pythons took larger prey; however, 65% of prey items of small pythons were represented by nocturnally active, small mammals, a larger proportion than present in larger snakes. Several measures of thermal biology (absolute body temperature, thermal differential of body temperature to air temperature, maximum hourly heating and cooling rates) were not strongly affected by python body mass. Additionally, body temperature was only influenced by the behavioural choice of microhabitat selection and was not affected by python body size or position, suggesting that these behavioural choices do not allow smaller pythons to vastly increase their temporal foraging window. By coupling dietary analysis, measures of body temperature and behavioural observations of free‐ranging animals, we conclude that, contrary to theoretical predictions, a small body size does not thermally restrict the temporal window for ambush foraging in M. s. imbricata. An ontogenetic or size‐determined switch from ambush feeding to actively foraging on slower prey would account for the differences in prey taken by these animals. The concept of altered foraging behaviour warrants further investigation in this species.  相似文献   
24.
A precise approach to the quantification of relationships between suture complexity, as measured by fractal analysis (step-line procedure), the architecture of shells, and the main colonized environments, has been made in a set of Late Jurassic ammonites ( N =507). Statistically significant differences between fractal-dimension ( D f) mean values of evolute and involute shells are interpreted as caused by differences in the surface:volume ( S:V ) ratio. Suture complexity is also related to the shape of whorl section. The lowest D f values correspond to subcircular whorl sections (low S:V ratio) and the highest ones to acute sections (high S:V ratio). The shape of flanks shows correlation with suture complexity. The highest values of D f are found in planulate shells and the lowest ones in whorl cross sections with convex flanks. Highly significant differences appear between D f mean values from unsculptured shells and those from ammonites with ribs and/or tubercles of medium to large size. Multivariate analysis shows a combined variation of shell features and suture complexity, resulting in a heterogeneous distribution of D f values within the ammonite morphospace, mainly according to structural (shell architecture) and ornamental (sculpture strength rather than density) factors. Finally, the data obtained on relationships between suture complexity and the colonized environments (epicontinental vs. epioceanic inhabitants) suggest that suture complexity is not primarily related to bathymetry, and/or that no major differences in habitat depths existed between epicontinental and epioceanic ammonites.  相似文献   
25.
The widespread assumption that sutural complexity in ammonites is mainly proportional to water depth is revisited. Fractal analysis has been used for the precise morphometric evaluation of sutural complexity in 131 Upper Jurassic ammonites. Suture lines belonging to twelve families have been analyzed, account being taken of shell structure (coiling, shape of whorl section), sculpture and paleoenvironments. Fractal dimensions obtained in epicontinental and epioceanic ammonites show the unlikelihood of precise relationships between suture complexity and depth, and/or the absence of major differences in habitat depth if bathymetry played any significant role in the configuration of intricate septa. Suture complexity appears to be better related to shell structural types. □ Fractal analysis, ammonite sutures, Upper Jurassic.  相似文献   
26.
27.
28.
1. Bacteria can be an important resource for zooplankton production in aquatic food webs, although the degree to which bacteria sustain zooplankton growth and reproduction is not clear. We performed a growth experiment with Daphnia galeata feeding on different ratios of P‐replete Pseudomonas and Rhodomonas, ranging from a 100% bacterial to a 100% algal diet. 2. A pure bacterial diet did not support survival, growth or reproduction of D. galeata. While a 20% share of Rhodomonas in the food allowed survival of daphniids, the occurrence of offspring on a 50% algal diet indicated that the threshold for successful reproduction was between those two proportions of algal food. Increasing the proportion of the alga further increased growth and reproductive output, indicating that Rhodomonas was a higher‐quality food than Pseudomonas. 3. A subsequent labelling experiment demonstrated that D. galeata incorporated phosphorus from Pseudomonas and Rhodomonas with similar efficiency, whereas carbon was incorporated more efficiently from Pseudomonas than from Rhodomonas. 4. we hypothesise that inadequate levels of essential biochemicals in pure bacterial diets led to decreased Daphnia performance. Concentrations of fatty acids in general, and especially of polyunsaturated fatty acids, were much lower in Pseudomonas than in Rhodomonas. This difference could explain the different growth and reproduction responses, although limitation by other essential biochemicals (e.g. sterols) cannot be ruled out. 5. Hence, where they dominate, bacteria may provide a significant part of the elemental flux to species feeding higher in the food web on the short term. However, the performance of consumers may be constrained by essential biochemicals.  相似文献   
29.
Photosystem II (PSII) activation after hydration with water or humid air was measured in four hydrophilic and a generalist lichen to test the hypothesis that slow activation might explain habitat restriction in the former group. For the hydrophilic species, activation was after 4 h nearly completed in Lobaria amplissima and Platismatia norvegica, while only c. 50% for Bryoria bicolor and Usnea longissima. The generalist Platismatia glauca was activated instantaneously. The effect of this on lichen field performance was investigated using a dynamic model separating the two water sources rain and humid air. Model simulations were made using the species‐specific characteristics and climate data from 12 stream microhabitats. For U. longissima, slow PSII activation could reduce realized photosynthesis by a factor of five. Bryoria bicolor was almost as severely affected, while P. norvegica displayed moderate reductions. Lobaria amplissima displayed longer realized activity periods even in unfavourable microclimates, possibly because of a higher water loss resistance. Both close proximity to streams and presence of turbulent water had a positive impact on realized activity among the slowly activated species, coinciding with observed distribution patterns of hydrophilic species. The results presented here may thus partly explain observed habitat restrictions of rare hydrophilic lichens.  相似文献   
30.
Photosynthesis was characterized for the unicellular green alga Coccomyxa sp., grown at low inorganic carbon (Ci) concentrations, and compared with Chlamydomonas reinhardtii, which had been grown so that the CO2 concentrating mechanism (CCM) was expressed, and with protoplasts isolated from the C3 plant barley (Hordeum vulgare). Chlamydomonas had a significantly higher Ci-use efficiency of photosynthesis, with an initial slope of the Ci-response curve of 0.7 mol(gChl)−1 h−1 mmol Cim−3)−1, as compared to 0.3 and 0.23 mol(gChl)−1 h−1 (mmol Cim−3)−1 for Coccomyxa and barley, respectively. The affinity for Ci was also higher in Chlamydomonas, as the half maximum rate of photosynthesis [K0.5 (Ci)] was reached at 0.18 mol m−3, as compared to 0.30 and 0.45 mol m−3 for Coccomyxa and barley, respectively. Ethoxyzolamide (EZ), an inhibitor of the enzyme carbonic anhydrase (CA) and the CCM, caused a 17-fold decrease in the initial slope of the photosynthetic Cj-response curve in Chlamydomonas, but only a 1.5- to two-fold decrease in Coccomyxa and barley. The photosynthetic light-response curve showed further similarities between barley and Coccomyxa. The rate of bending of the curve, described by the convexity parameter, was 0.99 (sharp bending) and 0.81–0.83 (gradual bending) for cells grown under low and high light, respectively. In contrast, the maximum convexity of Chlamydomonas was 0.85. The intrinsically lower convexity of Chlamydomonas is suggested to result from the diversion of electron transport from carbon fixation to the CCM. Taken together, these results suggest that Coccomyxa does not possess a CCM and due to this apparent lack of a CCM, we propose that Coccomyxa is a better cell model system for studying C3 plant photosynthesis than many algae currently used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号