首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   35篇
  国内免费   2篇
  326篇
  2021年   5篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   11篇
  2013年   10篇
  2012年   18篇
  2011年   18篇
  2010年   11篇
  2009年   10篇
  2008年   14篇
  2007年   10篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   4篇
  2000年   13篇
  1999年   10篇
  1998年   9篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   8篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   8篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1977年   5篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1971年   4篇
  1970年   2篇
  1969年   4篇
  1968年   4篇
  1967年   3篇
  1966年   2篇
  1938年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
121.
Growth of Streptococcus faecalis in complex media with various fuel sources appeared to be limited by the rate of supply of adenosine-5′ -triphosphate (ATP) at 1 atm and also under 408 atm of hydrostatic pressure. Growth under pressure was energetically inefficient, as indicated by an average cell yield for exponentially growing cultures of only 10.7 g (dry weight) per mol of ATP produced compared with a 1-atm value of 15.6. Use of ATP for pressure-volume work or for turnover of protein, peptidoglycan, or stable ribonucleic acid (RNA) did not appear to be significant causes of growth inefficiency under pressure. In addition, there did not seem to be an increased ATP requirement for ion uptake because cells growing at 408 atm had significantly lower internal K+ levels than did those growing at 1 atm. Pressure did stimulate the membrane adenosine triphosphatase (ATPase) or S. faecalis at ATP concentrations greater than 0.5 mM. Intracellular ATP levels were found to vary during the culture cycle from about 2.5 μmol/ml of cytoplasmic water for lag-phase or stationary-phase cells to maxima for exponentially growing cells of about 7.5 μmol/ml at 1 atm and 5.5 μmol/ml at 408 atm. N,N′-dicyclohexylcarbodiimide at a 10 μM concentration improved growth efficiency under pressure, as did Mg2+ or Ca2+ ions at 50 mM concentration. These agents also enhanced ATP pooling, and it seemed that at least part of the growth inefficiency under pressure was due to increased ATPase activity. In all, it appeared that S. faecalis growing under pressure has somewhat reduced ATP supply but significantly increased demand and that the inhibitory effects of pressure can be interpreted largely in terms of ATP supply and demand.  相似文献   
122.
HIV infection causes immune activation that leads to oxidative damage. Proinflammatory cytokines may promote such damage and the regulatory cytokine IL-10 may protect against such damage. To examine the relation of these cytokines to oxidative damage, 67 cases of oxidative damage and 67 matched controls were selected from the reaching for excellence in adolescent health (REACH) study. Subjects were young (15-23 years), largely female (76%), HIV-positive (73%) and black (69%). Proinflammatory cytokines were not significantly associated with oxidative damage but plasma IL-10 had a significant, negative association with oxidative damage. This finding is consistent with a protective role for IL-10 in diminishing oxidative damage during immune activation.  相似文献   
123.
124.
Platelet aggregation. I. Regulation by cyclic AMP and prostaglandin E1   总被引:12,自引:0,他引:12  
Platelet aggregation plays a major role in thrombogenesis. This study was undertaken to examine the inhibition of platelet aggregation induced by adenosine diphosphate. It is known that cyclic AMP (adenosine monophosphate) and its dibutyryl derivative inhibit platelet aggregation. This study showed that prostaglandin E1 (PGE1) also inhibits platelet aggregation and stimulates cyclic AMP synthesis by stimulation of adenyl cyclose. Caffeine, on the other hand, inhibits platelet phosphodiesterase, and increases cyclic AMP levels. PGA1 and PGF1 alpha can also inhibit platelet aggregation but only at very high concentrations.  相似文献   
125.
126.
At 10 mM, Cu+ was highly protective against killing of spores of Bacillus megaterium ATCC 19213 by H2O2, while at higher concentrations, from 15–100 mM, killing was augmented. In contrast, Cu2+, Fe2+, Fe3+, Co2+ or Co3+ ions acted only protectively. Cu+ itself was sporicidal in the absence of H2O2 or ascorbate, and its sporicidal action did not depend on generation of highly reactive oxygen species. It appeared that killing involved either inhibition of germination or copper toxicity to germinated cells in that Cu+-inactivated spores did not germinate readily but chemical decoating of the cells prior to plating on a solid medium resulted in reversal of the sporicidal effect. Received 12 July 1996/ Accepted in revised form 03 November 1996  相似文献   
127.
Arginine deiminase system and acid adaptation of oral streptococci.   总被引:5,自引:0,他引:5       下载免费PDF全文
T M Curran  J Lieou    R E Marquis 《Applied microbiology》1995,61(12):4494-4496
Streptococcus rattus FA-1 and Streptococcus sanguis NCTC 10904 underwent phenotypic acid adaptation in batch cultures toward the end of sugar-fueled growth after the culture pH had dropped to triggering values. The bacteria could be derepressed or induced for arginine deiminase independently of acid adaptation, and arginolysis afforded protection against acid killing over and above that of acid adaptation.  相似文献   
128.
129.
Tertiary butyl hydroperoxide (t-BOOH) was found to be sporicidal for Bacillus megaterium ATCC19213. Sporicidal action was very temperature dependent, and the potency of t-BOOH increased about tenfold for each increase in temperature of 15 °C over the range from 30° to 70 °C. At still higher temperatures, heat and molar levels of t-BOOH were mutually potentiating for killing. Vegetative cells and germinated spores were some thousand times less resistant to t-BOOH than dormant spores. The order of resistance for spores was: Bacillus stearothermophilus ATCC7953 > Bacillus subtilis var. niger = Bacillus megaterium ATCC33729 > Bacillus megaterium ATCC19213. Killing was not enhanced by decoating and occurred without germination or loss of refractility of the spores. Spore resistance to t-BOOH was lower at more acid pH values and was decreased also by demineralization. Spores could be protected by the chelator o-phenanthroline, especially in association with Fe2+. Overall, it seemed that killing was associated with nonmetabolic formation of alkyl peroxyl radicals, which are thought to be responsible for killing of vegetative cells by organic hydroperoxides.Abbreviation A-BOOH tertiary butyl hydroperoxide  相似文献   
130.
Although peracetic acid (PAA) is used widely for cold sterilization and disinfection, its mechanisms of sporicidal action are poorly understood. PAA at high concentrations (5–10%) can cause major loss of optical absorbance and microscopically-visible damage to bacterial spores. Spores killed by lower levels of PAA (0.02–0.05%) showed no visible damage and remained refractile. Treatment of spores ofBacillus megaterium ATCC 19213 with PAA at concentrations close to the lethal level sensitized the cells to subsequent heat killing. In addition, PAA was found to act in concert with hypochlorite and iodine to kill spores. Antioxidant sulfhydryl compounds or ascorbate protected spores against PAA killing. Trolox, a water-soluble form of -tocopherol, was somewhat protective, while other antioxidants, including -tocopherol, urate, bilirubin, ampicillin and ethanol were not protective. Chelators, including dipicolinate, were not protective, but transition metal ions, especially the reduced forms (Co2+, Cu+ and Fe2+) were highly protective. The net conclusions are that organic radicals formed from PAA are sporicidal and that they may act as reducing agents for spores that are normally in a highly oxidized state, in addition to their well known actions as oxidizing agents in causing damage to vegetative cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号