首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   15篇
  247篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   3篇
  2007年   10篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   7篇
  1999年   5篇
  1998年   2篇
  1995年   3篇
  1994年   2篇
  1992年   9篇
  1991年   16篇
  1990年   7篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1984年   8篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1972年   3篇
  1971年   4篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有247条查询结果,搜索用时 0 毫秒
151.
Successional patterns are dependent on the nature of the substratum, water flow, concentrations of organics as well as the availability of bacteria, algal spores and invertebrate larvae in the coastal environment. Bacteria play an especially important role in biofilm formation as they are generally the earliest colonizers. In the present study, both winter and summer biofilm succession patterns were examined on glass coverslips inverted on experimental racks attached at two tidal levels on a sheltered shore in Hong Kong. In the succession, bacteria were followed by diatoms and cyanobacteria. Encrusting algae appeared in the late stages of the experiment (day 80 in summer and day 60 in winter). Colonization by bacteria was much slower in summer and their density remained low throughout the experimental period. The first appearance of diatoms and cyanobacteria, however, was more rapid in the summer. Bacteria and diatoms on the low-shore surfaces also had a faster succession rate than on the high-shore surfaces, suggesting that desiccation/aerial temperature are the causal factors for such differences.  相似文献   
152.
In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.  相似文献   
153.
154.
Osteoarthritis is a common malady of the musculoskeletal system affecting the articular cartilage. The increased frequency of osteoarthritis with aging indicates the complex etiology of this disease, which includes pathophysiology and joint stability including biomechanics. The balance between anabolic morphogens and growth factors and catabolic cytokines is at the crux of the problem of osteoarthritis. One such signal is transforming growth factor-beta (TGF-beta). The impaired TGF-beta signaling has been identified as a culprit in old mice in a recent article in this journal. This commentary places this discovery in the context of anabolic and catabolic signals and articular cartilage homeostasis in the joint.  相似文献   
155.
156.
Low-density lipoproteins (LDL) increase the selectivity of tumour targeting by drugs, including sensitisers for photodynamic therapy, because of the enhanced expression of specific LDL receptors in many types of transformed as compared with non-transformed cells. This investigation aims at gaining more information on the role of LDL receptors in the accumulation of photosensitizer-LDL complexes by human and rat transformed fibroblasts, and the interference of the photosensitizer with LDL recognition by the specific receptors. Both an amphiphilic hematoporphyrin IX (Hp) and a hydrophobic Zn(II)-phthalocyanine (ZnPc) photosensitizers bind to human LDL with molar ratios of 5-6:1 and 10-12:1, respectively. The hematoporphyrin-LDL complex is accumulated by human HT1080 fibroblasts mainly through the high affinity LDL receptors, while the Zn-phthalocyanine-LDL complex is internalised through non specific endocytosis because of changes in the apoB LDL structure induced by phthalocyanine association, as suggested by spectroscopic studies. The uptake of LDL-delivered hematoporphyrin, but not Zn-phthalocyanine, is about 4-fold higher in HT1080 cells stimulated for maximal expression of LDL receptors as compared with non-stimulated cells. This difference is abolished by LDL acetylation. Human LDL-bound hematoporphyrin and Zn-phthalocyanine are up taken by stimulated and non-stimulated 4R rat fibroblasts with similar efficiency. Scatchard plot analysis of human (125)I-LDL binding to 4R cells shows the presence of only low affinity receptors while 350,000 high affinity receptors are expressed per HT1080 cell. It is concluded that a careful evaluation of the lack of conformational changes of LDL is critical for guaranteeing the selectivity and efficiency of photosensitizer delivery to tumour cells.  相似文献   
157.
Fracture healing in long bones is a sequential multistep cascade of hemostasis, transient inflammation, chemotaxis of progenitor cells, mitosis, differentiation of cartilage, and replacement with bone. This multistep cascade is orchestrated by cytokines and morphogens. Members of the interleukin (IL)-17 family, including IL-17B, have been identified in cartilage, but their expression during fracture healing is unknown. In this study, we determined the immunolocalization of cytokines IL-17A and IL-17B, along with the IL-17 receptor (IL-17R) and IL-17 receptor-like protein (IL-17RL), during the sequence of fracture repair in a standard model. The results were extended to developmental changes in the epiphyseal growth plate of long bones. Members of the IL-17 family were localized in chondrocytes in the fracture callus. Moreover, we found significant parallels to the localization of these cytokines and their receptors in chondrocytes during an endochondral differentiation program in the epiphyseal growth plate.  相似文献   
158.
159.
Sorting nexins (SNX) comprise a family of proteins with homology to several yeast proteins, including Vps5p and Mvp1p, that are required for the sorting of proteins to the yeast vacuole. Human SNX1, -2, and -4 have been proposed to play a role in receptor trafficking and have been shown to bind to several receptor tyrosine kinases, including receptors for epidermal growth factor, platelet-derived growth factor, and insulin as well as the long form of the leptin receptor, a glycoprotein 130-associated receptor. We now describe a novel member of this family, SNX6, which interacts with members of the transforming growth factor-beta family of receptor serine-threonine kinases. These receptors belong to two classes: type II receptors that bind ligand, and type I receptors that are subsequently recruited to transduce the signal. Of the type II receptors, SNX6 was found to interact strongly with ActRIIB and more moderately with wild type and kinase-defective mutants of TbetaRII. Of the type I receptors, SNX6 was found to interact only with inactivated TbetaRI. SNXs 1-4 also interacted with the transforming growth factor-beta receptor family, showing different receptor preferences. Conversely, SNX6 behaved similarly to the other SNX proteins in its interactions with receptor tyrosine kinases. Strong heteromeric interactions were also seen among SNX1, -2, -4, and -6, suggesting the formation in vivo of oligomeric complexes. These findings are the first evidence for the association of the SNX family of molecules with receptor serine-threonine kinases.  相似文献   
160.
The cell--cell adhesion molecule 1 (C-CAM1) plays an important role as a tumor suppressor for prostate cancer. Decreased expression of C-CAM1 was detected in prostate, breast, and colon carcinoma. Reexpression of C-CAM1 in prostate and breast cancer cell lines was able to suppress tumorigenicity in vivo. These observations suggest that C-CAM1 may be used as a marker for cancer detection or diagnosis. To generate monoclonal antibodies specific to C-CAM1, we have overexpressed full-length human C-CAM1 in Sf9 cells using a baculovirus expression system. The protein was purified 104-fold using nickel affinity chromatography. About 0.4 mg purified C-CAM1 was obtained from 200 mg of infected cells. When the purified protein was digested with peptidyl-N-glycosidase, the apparent mobility of the protein on SDS--PAGE changed from 90 to 58 kDa, which is close to the molecular weight predicted from the cloned cDNA sequence. This observation suggests that C-CAM1 was glycosylated on asparagine residues when expressed in Sf9 cells. Western blotting and internal protein sequencing analysis confirmed that the purified protein is human C-CAM1. Biochemical and functional assays indicate that this protein expressed in Sf9 cells displays characteristics similar to those of native protein, including adhesion function and glycosylation modification. Using this protocol, sufficient quantity of this protein can be produced with purity suitable for monoclonal antibody generation and biochemical study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号