首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1987年   1篇
  1985年   1篇
  1975年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
31.
This study demonstrated that the phospholipase A1 purified from human post-heparin plasma catalyzes the same reactions (hydrolysis and transacylation) and utilizes the same substrates as the phospholipase A1 obtained by heparin treatment of the plasmalemma of rat liver (Waite, M. and Sisson, P. (1973) J. Biol. Chem. 248, 7985). 1-acylglycerol was the preferred acyl donor and transacylation was the predominate reaction. The results strongly support our earlier conclusions that the phospholipase in plasma originates from the liver and that this enzyme is capable of using a variety of acyl acceptors, including water.  相似文献   
32.
The influence of electromagnetic fields (EMF) emitted by cellular phones on preparatory slow brain potentials (SP) was studied in two different experimental tasks: In the first, healthy male human subjects had to perform simple self-paced finger movements to elicit a Bereitschaftspotential; in the second, they performed a complex and cognitive demanding visual monitoring task (VMT). Both tasks were performed with and without EMF exposure in counterbalanced order. Whereas subjects' performance did not differ between the EMF exposure conditions, SP parameters were influenced by EMF in the VMT: EMF exposure effected a significant decrease of SPs at central and temporo-parieto-occipital brain regions, but not at the frontal one. In the simple finger movement task, EMF did not affect the Bereitschaftspotential. Bioelectromagnetics 19:384–387, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
33.
Alzheimer’s disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-β (Aβ) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aβ accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.Subject terms: Proteomics, Alzheimer''s disease, Molecular neuroscience, Alzheimer''s disease  相似文献   
34.
35.
Purified chloroplast tRNAs were isolated fromPisum sativum leaves and radioactively labeled at their 3′ end using tRNA nucleotidyl transferase and α32P-labeled CTP. Pea ctDNA was fragmented using a number of restriction endonucleases and hybridized with thein vitro labeled chloroplast tRNAs by DNA transfer method. Genes for tRNAs have been found to be dispersed throughout the chloroplast genome. A closer analysis of the several hybrid regions using recombinant DNA plasmids have shown that tRNA genes are localized in the chloroplast genome in both single and multiple arrangements. Two dimensional gel electrophoresis of total ct tRNA have identified 36 spots. All of them have been found to hybridize withPisum sativum ctDNA. Using recombinant clones, 30 of the tRNA spots have been mapped inPisum sativum ctDNA.  相似文献   
36.
Up until the mid 2000s, the capacity to generate every cell of an organism was exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka developed an alternative method of generating embryonic-like stem cells from adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. The possibility of generating “custom-made” pluripotent cells, ideal for patient-specific disease models, alongside their possible applications in regenerative medicine and reproduction, has drawn a lot of attention to the field with numbers of iPSC studies published growing exponentially. IPSCs have now been generated for a wide variety of species, including but not limited to, mouse, human, primate, wild felines, bovines, equines, birds and rodents, some of which still lack well-established embryonic stem cell lines. The paucity of robust characterization of some of these iPSC lines as well as the residual expression of transgenes involved in the reprogramming process still hampers the use of such cells in species preservation or medical research, underscoring the requirement for further investigations. Here, we provide an extensive overview of iPSC generated from a broad range of animal species including their potential applications and limitations.  相似文献   
37.
38.
Age-stiffening of ocular tissues is statistically linked to glaucoma in the elderly. In this study, the effects of age-stiffening on the lamina cribrosa, the primary site of glaucomatous nerve damages, were modeled using computational finite element analysis. We showed that glaucomatous nerve damages and peripheral vision loss behavior can be phenomenologically modeled by shear-based damage criterion. Using this damage criterion, the potential vision loss for 30 years old with mild hypertension of 25mmHg intraocular pressure (IOP) was estimated to be 4%. When the IOP was elevated to 35mmHg, the potential vision loss rose to 45%; and age-stiffening from 35 to 60 years old increased the potential vision loss to 52%. These results showed that while IOP plays a central role in glaucomatous damages, age-stiffening facilitates glaucomatous damages and may be the principal factor that resulted in a higher rate of glaucoma in the elderly than the general population.  相似文献   
39.
Recent studies indicate a crucial role for neuronal glycogen storage and degradation in memory formation. We have previously identified alpha‐amylase (α‐amylase), a glycogen degradation enzyme, located within synaptic‐like structures in CA1 pyramidal neurons and shown that individuals with a high copy number variation of α‐amylase perform better on the episodic memory test. We reported that neuronal α‐amylase was absent in patients with Alzheimer''s disease (AD) and that this loss corresponded to increased AD pathology. In the current study, we verified these findings in a larger patient cohort and determined a similar reduction in α‐amylase immunoreactivity in the molecular layer of hippocampus in AD patients. Next, we demonstrated reduced α‐amylase concentrations in oligomer amyloid beta 42 (Aβ42) stimulated SH‐SY5Y cells and neurons derived from human‐induced pluripotent stem cells (hiPSC) with PSEN1 mutation. Reduction of α‐amylase production and activity, induced by siRNA and α‐amylase inhibitor Tendamistat, respectively, was further shown to enhance glycogen load in SH‐SY5Y cells. Both oligomer Aβ42 stimulated SH‐SY5Y cells and hiPSC neurons with PSEN1 mutation showed, however, reduced load of glycogen. Finally, we demonstrate the presence of α‐amylase within synapses of isolated primary neurons and show that inhibition of α‐amylase activity with Tendamistat alters neuronal activity measured by calcium imaging. In view of these findings, we hypothesize that α‐amylase has a glycogen degrading function within synapses, potentially important in memory formation. Hence, a loss of α‐amylase, which can be induced by Aβ pathology, may in part underlie the disrupted memory formation seen in AD patients.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号