全文获取类型
收费全文 | 1451篇 |
免费 | 129篇 |
国内免费 | 33篇 |
专业分类
1613篇 |
出版年
2023年 | 13篇 |
2022年 | 32篇 |
2021年 | 42篇 |
2020年 | 30篇 |
2019年 | 46篇 |
2018年 | 71篇 |
2017年 | 41篇 |
2016年 | 68篇 |
2015年 | 94篇 |
2014年 | 87篇 |
2013年 | 108篇 |
2012年 | 147篇 |
2011年 | 150篇 |
2010年 | 76篇 |
2009年 | 58篇 |
2008年 | 83篇 |
2007年 | 82篇 |
2006年 | 70篇 |
2005年 | 41篇 |
2004年 | 56篇 |
2003年 | 35篇 |
2002年 | 39篇 |
2001年 | 21篇 |
2000年 | 17篇 |
1999年 | 20篇 |
1998年 | 7篇 |
1997年 | 3篇 |
1996年 | 7篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 7篇 |
1991年 | 2篇 |
1990年 | 5篇 |
1989年 | 8篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1986年 | 5篇 |
1985年 | 8篇 |
1984年 | 4篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1969年 | 1篇 |
1964年 | 1篇 |
排序方式: 共有1613条查询结果,搜索用时 15 毫秒
41.
Guillaume Martin Franc-Christophe Baurens Céline Cardi Jean-Marc Aury Angélique D’Hont 《PloS one》2013,8(6)
Background
Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus.Methodology/Principal Findings
The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed.Conclusion
The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. 相似文献42.
43.
Rui Liu Ting Zhu Tao Yang Zhengyan Yang Ang Ren Liang Shi Jing Zhu Hanshou Yu Mingwen Zhao 《Environmental microbiology》2021,23(2):682-695
Nitric oxide (NO) is an important signalling molecule in stress response of organisms. We previously reported that NO decreases heat stress (HS)-induced ganoderic acid (GA) accumulation in Ganoderma lucidum. To explore the mechanisms by which NO modulates GA biosynthesis under HS, the effect of NO on the reactive oxygen species (ROS) content was examined. The results showed that NO decreased the production of mitochondrial ROS (mitROS) by 60% under HS. Further research revealed that NO reduced the mitROS content by inhibiting aconitase (Acon) activity. The GA content in Acon-silenced (Aconi) strains treated with NO donor did not differ significantly from that in untreated Aconi strains. To study the mechanism by which Acon activity is inhibited, the S-nitrosylation level of Acon was determined. Biotin-switch technology and mass spectrometry analysis were used to show that Acon is S-nitrosylated at the Cys-594 amino acid residue. Substitution of Cys-594 with a Ser, which cannot be S-nitrosylated, abolished the responsiveness of Acon to the NO-induced reduction in its enzymatic activity. These findings demonstrate that NO inhibits Acon activity through S-nitrosylation at Cys-594. In summary, these findings describe mechanism by which NO regulates GA biosynthesis via S-nitrosylation of Acon under HS condition in G. lucidum. 相似文献
44.
Zhang D Zhou W Yin C Chen W Ozawa R Ang LH Anandan L Aigaki T Hing H 《Genesis (New York, N.Y. : 2000)》2006,44(4):189-201
Despite the identification of a number of guidance molecules, a comprehensive picture has yet to emerge to explain the precise anatomy of the olfactory map. From a misexpression screen of 1,515 P{GS} lines, we identified 23 genes that, when forcibly expressed in the olfactory receptor neurons, disrupted the stereotyped anatomy of the Drosophila antennal lobes. These genes, which have not been shown previously to control olfactory map development, encode novel proteins as well as proteins with known roles in axonal outgrowth and cytoskeletal remodeling. We analyzed Akap200, which encodes a Protein Kinase A-binding protein. Overexpression of Akap200 resulted in fusion of the glomeruli, while its loss resulted in misshapen and ectopic glomeruli. The requirement of Akap200 validates our screen as an effective approach for recovering genes controlling glomerular map patterning. Our finding of diverse classes of genes reveals the complexity of the mechanisms that underlie olfactory map development. 相似文献
45.
46.
The origin and timing of the appearance of leaf domatia during the ontogeny of plants are important evolutionary traits driving the maintenance of ant-plant associations. In this study conducted in French Guiana on Hirtella physophora, Maieta guianensis, and Tococa guianensis, we focused on the formation and development of leaf domatia having different morphological origins. We modeled the timing of the onset of these domatia, then compared their morpho-anatomical structure. Although the ontogenetic development of the domatia differed between species, they developed very early in the plant's ontogeny so that we did not note differences in the timing of the onset of these domatia. For H. physophora seedlings, a transitional leaf forms before the appearance of fully developed domatia, whereas in M. guianensis and T. guianensis the domatia forms abruptly without transitional leaves. Moreover, in all cases, the morpho-anatomical structure of the domatia differed considerably from the lamina. All three species had similar morpho-anatomical characteristics for the domatia, indicating a convergence in their structural and functional characteristics. This convergence between taxonomically distant plant species bearing domatia having different morphological origins could be interpreted as a product of the plant's evolution toward the morphology and anatomy most likely to maximize ant recruitment and long-term residence. 相似文献
47.
48.
The preimplantation development of the mouse embryo leads to the divergence of the first two cell lineages, the inner cell mass and the trophectoderm. The formation of a microvillus pole during compaction at the eight-cell stage and its asymmetric inheritance during mitosis are key events in the emergence of these two cell populations. Ezrin, a member of the ERM protein family, seems to be involved in the formation and stabilization of this apical microvillus pole. To further characterize its function in early development, we mutated the key residue T567, which was reported to be essential for regulation of ezrin function through phosphorylation. Here, we show that expression of ezrin mutants in which the COOH-terminal threonine T567 was replaced by an aspartate (to mimic a phosphorylated residue; T567D) or by an alanine (to avoid phosphorylation; T567A) interferes with E-cadherin function and disrupts the first morphogenetic events of development: compaction and cavitation. The active mutant ezrin-T567D induces the formation of numerous and abnormally long microvilli at the surface of blastomeres. Moreover, it localizes all around the cell cortex and inhibits cell-cell adhesion and cell polarization at the eight-cell stage. During the following stages, only half of the embryos are able to compact and finally to cavitate. In those embryos, the amount of ezrin-T567D decreases in the basolateral areas, while the proportion of adherens junctions increases. The reverse inactive mutant ezrin-T567A is mainly cytoplasmic and does not perturb compaction at the eight-cell stage. However, at the 16-cell stage, it relocalizes at the basolateral cortex, leading to a strong decrease in the surface of adherens junctions, and finally, embryos abort development. Our results show that ezrin is directly involved in the formation of microvilli in the early mouse embryo. Moreover, they indicate that maintenance of ezrin in basolateral areas prevents microvilli breakdown and inhibits the formation of normal cell-cell contacts mediated by E-cadherin, thereby impairing blastomeres polarization and morphogenesis of the blastocyst. 相似文献
49.
The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE. 下载免费PDF全文
The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli. 相似文献
50.
【背景】萘普生是一种被广泛使用的非甾体抗炎药,治疗人类疾病的同时对环境产生一定的消极影响,甚至危害到人类的生存环境。【目的】利用微生物降解萘普生类污染物是一种价格低廉且行之有效的方法。【方法】以萘普生为唯一碳源,培养驯化高效的萘普生降解菌群;利用高通量测序技术解析萘普生降解菌群的微生物群落变化,鉴定萘普生降解菌群种类;通过GC-MS分析萘普生降解菌群的降解途径。【结果】获得了以Rhodanobacter为主的萘普生高效降解菌群,确定了萘普生降解菌群的最佳降解条件为:30°C、pH7.0、摇床转速150r/min、接种量10%,萘普生降解率达60.58%,并预测出萘普生降解菌群的降解途径。【结论】获得了高效的萘普生降解菌群,明晰了降解机理和降解途径,不仅丰富了微生物资源种类,更为微生物的工程应用奠定了理论基础。 相似文献