首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   7篇
  国内免费   1篇
  2017年   3篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   12篇
  2010年   16篇
  2009年   21篇
  2008年   13篇
  2007年   15篇
  2006年   13篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2001年   2篇
  2000年   6篇
  1999年   6篇
  1998年   10篇
  1997年   2篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   9篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   7篇
  1982年   7篇
  1981年   10篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   6篇
  1971年   9篇
  1970年   2篇
  1969年   4篇
  1967年   2篇
  1965年   2篇
  1962年   2篇
  1949年   2篇
排序方式: 共有319条查询结果,搜索用时 913 毫秒
81.
SYNOPSIS. The ultrastructure of attached Trypanosoma vivax epimastigote clusters in the proboscis of the tsetse fly Glossina fuscipes is described from electron micrographs of thin sections. Some flagellates are attached directly to the lining of the insect's labrum by their flagella, most of which are aligned along the long axis of the proboscis. Other trypanosomes are attached indirectly, their flagella adhering to those of flagellates which are directly attached. Junctional complexes similar to those described from metazoan epithelia are found on the flagellar membrane. A long zonular hemidesmosome attaches the flagellum to the proboscis wall and a series of closely set macular desmosomes link the flagellar membranes of adjacent flagellates. Unlike the trypomastigote stages of T. vivax, more than one row of macular desmosomes may be present along the flagellum-body junction of the trypanosome. It is suggested that all these Junctional complexes serve to buttress the flagellate's attachment to its insect host and so maintain anchorage of the parasite during the fly's blood meals. The ability of the flagellum of trypanosomatids to form Junctional complexes may be a factor contributing to their success as parasites, this adaptation enabling them to multiply while attached to host surfaces.  相似文献   
82.
The Ptinidae (Coleoptera: Bostrichoidea) are a cosmopolitan, ecologically diverse, but poorly known group of Coleoptera and, excluding a few economic pests, species are rarely encountered. This first broad phylogenetic study of the Ptinidae s.l. (i.e. including both the spider beetles and anobiids) examines relationships based on DNA sequence data from two mitochondrial genes (16S and COI) and one nuclear gene (28S), using out‐group taxa from both the Bostrichidae and Dermestidae. Topologies varied depending on the genes used and whether data were analysed with either parsimony or Bayesian methods. Generally the two mitochondrial genes supported relationships near the tips of the phylogeny, whereas the nuclear gene supported the basal relationships. The monophyly of the Ptinidae was not inferred by all of the gene combinations and analysis methods, although the combined Ptinidae and Bostrichidae have a single origin in all cases. Alternative relationships include the Ptinidae s.s. (i.e. Ptininae and Gibbiinae) as sister to the anobiids (i.e. the nine remaining subfamilies of Ptinidae s.l.) + Bostrichidae, or the Bostrichidae as sister to the Ptinidae s.s.+ anobiids. Most of the larger subfamilies within the Ptinidae are not monophyletic. Further analysis with more taxa and more genes will be required to clarify and decide upon the best hypothesis of relationships found within the clades of the Bostrichidae and Ptinidae. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 88–108.  相似文献   
83.
Abstract. Tridactyl bird footprints preserved in Lower Eocene sandstone of the Chuckanut Formation in Whatcom County, Washington, USA, were made by a species of giant ground bird that walked along the subtropical lowland riverbank. The morphology and age of the tracks suggest the track maker was Diatryma (? = Gastornis). Although these birds have long been considered to be predators or scavengers, the absence of raptor‐like claws supports earlier suggestions that they were herbivores. The Chuckanut tracks are herein named as Rivavipes giganteus ichnogenus and ichnospecies nov., inferred to belong to the extinct family Gastornithidae.  相似文献   
84.
The mechanisms by which stomata respond to red light and CO2 are unknown, but much of the current literature assumes that these mechanisms reside wholly within the guard cells. However, responses of guard cells in isolated epidermes are typically much smaller than those in leaves, and there are several lines of evidence in the literature suggesting that the mesophyll is necessary for these responses in leaves. This paper advances the opinion that although guard cells may have small direct responses to red light and CO2, most of the stomatal response to these factors in leaves is caused by an unknown signal that originates in the mesophyll.  相似文献   
85.
86.
1. Shallow lakes and their ectothermic inhabitants are particularly vulnerable to the effects of climatic warming. These impacts are likely to depend on nutrient loading, especially if the combination of warming and eutrophication leads to severe hypoxia. 2. To investigate effects of realistic warming and nutrient loading on a fish species with high tolerance of warming and hypoxia, we observed population changes and timing of reproduction of three‐spined sticklebacks in 24 outdoor shallow freshwater ecosystems with combinations of temperature (ambient and ambient +4 °C) and three nutrient treatments over 16 months. 3. Warming reduced stickleback population biomass by 60% (population size by 76%) and nutrient‐addition reduced biomass by about 80% (population size 95%). Nutrients and warming together resulted in extinction of the stickleback populations. These losses were mainly attributed to the increased likelihood of severe hypoxia in heated and nutrient‐addition mesocosms. 4. Warming of nutrient‐rich waters can thus have dire consequences for freshwater ectotherm populations. The loss even of a hardy fish suggests a precarious future for many less tolerant species in such eutrophic systems under current climate change predictions.  相似文献   
87.
External and internal head structures of larvae of Nevrorthidae were described in detail. The results were compared to conditions found in other representatives of Neuroptera and the other two neuropterid orders. The cladistic analysis supported the monophyly of Neuroptera, Neuroptera exclusive of Nevrorthidae, Hemerobiiformia, and Myrmeleontiformia. Neuroptera exclusive of Nevrorthidae are supported by the formation of an undivided postmentum and the presence of cryptonephric Malpighian tubules. The highly specialized articulation of the neck (Rollengelenk) and the absence of a salivary duct are autapomorphies of Nevrorthidae. Ithonidae and Polystoechotidae form a clade and are the sister group of the remaining Hemerobiiformia, which are characterized by the complete lack of a gula and a terminal filament of the antenna. Within this lineage, a clade comprising Mantispidae, Dilaridae, Berothidae, and Rhachiberothidae is well supported. Larvae of Myrmeleontiformia are characterized by a complex transformation of head structures, with a hypostomal bridge, a small triangular gula, largely reduced maxillary grooves, and anteriorly shifted posterior tentorial grooves. The slender finger‐like mid‐dorsal apodeme is another autapomorphy of the group. Psychopsidae are placed as the sister group of the remaining Myrmeleontiformia, which are characterized by a conspicuous, protruding ocular region (often less distinct or even absent in Nemopteridae). Ascalaphidae are the sister group of Myrmeleontidae. Larvae of both families share the fusion of the tibia and tarsus in the hind leg. The larval characters analysed were not sufficient for full resolution of the myrmeleontiform and hemerobiiform lineages. The position of several families such as Osmylidae, Sisyridae, and Coniopterygidae remains uncertain. The results are in agreement with an aquatic ancestor of Neuroptera and secondarily acquired terrestrial habits within the lineage (Neuroptera exclusive of Nevrorthidae), and another invasion of the aquatic environment by Sisyridae. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 533–562.  相似文献   
88.
Several species of glaphyrid (Scarabaeoidea: Glaphyridae) beetles forage and mate on Mediterranean red bowl‐shaped flowers. In red anemones and poppies in Israel, female beetles occupy only a subset of the flowers, do not aggregate, and are hidden below the petals. This raises the question of how males find their mates. In the present study, we investigated the hypothesis that males and females orient to similar plant‐generated cues, thereby increasing their mate encounter prospects. Previous studies have demonstrated that beetle attraction to red models increases with display area. Choice tests with flowers and with models indicate that both male and female beetles prefer large displays. In anemones, beetles rest, feed, and mate mainly on male‐phase flowers, which are larger than female‐phase flowers. Poppies that contain beetles are larger than the population average. These findings support the hypothesis that males and females meet by orienting to large red displays. Corolla size correlates with pollen reward in both plant species, suggesting that visits to large flowers also yield foraging benefits. Male beetles often jump rapidly among adjacent flowers. By contrast to the preference for large flowers by stationary individuals, these jump sequences are random with respect to flower sex‐phase (in anemone) and size (in poppy). They may enable males to detect females at close range. We hypothesize that males employ a mixed mate‐searching strategy, combining orientation to floral signals and to female‐produced cues. The glaphyrids' preference for large flowers may have selected for extraordinarily large displays within the ‘red anemone’ pollination guild of the Levant. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 808–817.  相似文献   
89.
Wetlands are important and restricted habitats for dependent biota and play vital roles in landscape function, hydrology and carbon sequestration. They are also likely to be one of the most sensitive components of the terrestrial biosphere to global climate change. An understanding of relationships between wetland persistence and climate is imperative for predicting, mitigating and adapting to the impacts of future climate change on wetland extent and function. We investigated whether mire wetlands had contracted, expanded or remained stable during 1960–2000. We chose a study area encompassing a regional climatic gradient in southeastern Australia, specifically to avoid confounding effects of water extraction on wetland hydrology and extent. We first characterized trends in climate by examining data from local weather stations, which showed a slight increase in precipitation and marked decline in pan evaporation over the relevant period. Remote sensing of vegetation boundaries showed a marked lateral expansion of mires during 1961–1998, and a corresponding contraction of woodland. The spatial patterns in vegetation change were consistent with the regional climatic gradient and showed a weaker co‐relationship to fire history. Resource exploitation, wildland fires and autogenic mire development failed to explain the observed expansion of mire vegetation in the absence of climate change. We therefore conclude that the extent of mire wetlands is likely to be sensitive to variation in climatic moisture over decadal time scales. Late 20th‐century trends in climatic moisture may be related primarily to reduced irradiance and/or reduced wind speeds. In the 21st century, however, net climatic moisture in this region is projected to decline. As mires are apparently sensitive to hydrological change, we anticipate lateral contraction of mire boundaries in coming decades as projected climatic drying eventuates. This raises concerns about the future hydrological functions, carbon storage capacity and unique biodiversity of these important ecosystems.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号