首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   8篇
  59篇
  2021年   8篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有59条查询结果,搜索用时 12 毫秒
31.
Escherichia coli strains isolated from commercial broilers and an experimental flock of chickens were screened to determine phenotypic expression of antimicrobial resistance and carriage of drug resistance determinants. The goal of this study was to investigate the influence of oxytetracycline, sarafloxacin, and enrofloxacin administration on the distribution of resistance determinants and strain types among intestinal commensal E. coli strains isolated from broiler chickens. We detected a high prevalence of resistance to drugs such as tetracycline (36 to 97%), sulfonamides (50 to 100%), and streptomycin (53 to 100%) in E. coli isolates from treated and untreated flocks. These isolates also had a high prevalence of class 1 integron carriage, and most of them possessed the streptomycin resistance cassette, aadA1. In order to investigate the contribution of E. coli strain distribution to the prevalence of antimicrobial resistance and the resistance determinants, isolates from each flock were DNA fingerprinted by enterobacterial repetitive intergenic consensus sequence (ERIC) PCR. Although very diverse E. coli strain types were detected, four ERIC strain types were present on all of the commercial broiler farms, and two of the strains were also found in the experimental flocks. Each E. coli strain consisted of both susceptible and antimicrobial agent-resistant isolates. In some instances, isolates of the same E. coli strain expressed the same drug resistance patterns although they harbored different tet determinants or streptomycin resistance genes. Therefore, drug resistance patterns could not be explained solely by strain prevalence, indicating that mobile elements contributed significantly to the prevalence of resistance.  相似文献   
32.
33.
Strain degeneration in solventogenic clostridia is a known problem in the technical acetone–butanol fermentation bioprocess, especially in the continuous process mode. Clostridial strain degeneration was studied by Fourier transform infrared (FT-IR) spectroscopy of the bacterial cells. Degenerative variant formation in two strains, Clostridium beijerinckii NCIMB 8052 and Clostridium species AA332, was detected spectroscopically. Colonies on solid media were sampled, or assayed directly in situ by IR microscopy. It has previously been shown that the distinctive acidogenic and solventogenic physiological phases of Clostridium acetobutylicum in liquid medium can be discriminated by FT-IR spectroscopy. This was confirmed here for C. beijerinckii NCIMB 8052. The proportion of degenerate cells in a mixed population in liquid medium could be quantified, as the spectral features change in different ways during the normal growth cycle of wild type organisms and degenerate variants in batch culture. This opens a new perspective for physiology-based process monitoring and control, especially of the continuous acetone–butanol fermentation. Journal of Industrial Microbiology & Biotechnology (2001) 27, 314–321. Received 06 October 2000/ Accepted in revised form 20 April 2001  相似文献   
34.
Ellman MB  Kim JS  An HS  Chen D  KC R  An J  Dittakavi T  van Wijnen AJ  Cs-Szabo G  Li X  Xiao G  An S  Kim SG  Im HJ 《Gene》2012,505(2):283-290
MyD88 is an adapter protein that links toll-like receptors (TLRs) and Interleukin-1 receptors (IL-1Rs) with downstream signaling molecules. The MyD88 has been found to be an essential mediator in the development of osteoarthritis in articular cartilage. However, the role of the MyD88 pathway has yet to be elucidated in the intervertebral disk (IVD). Using in vitro techniques, we analyzed the effect of MyD88 pathway-specific inhibition on the potent inflammatory and catabolic mediator LPS and IL-1 in bovine and human nucleus pulposus (NP) cells by assessing matrix-degrading enzyme expression, including matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family). We also analyzed inhibition of MyD88 in the regulation of inducible nitric oxide synthase and TLR-2. Finally, we used an ex vivo organ culture model to assess the effects of MyD88 inhibitor (MyD88i) on catabolic factor-induced disk degeneration in mice lumbar disks. In bovine NP cells, MyD88i potently antagonizes LPS- or IL-1-mediated induction of cartilage-degrading enzyme production, including MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. MyD88i also attenuates the LPS- or IL-1-mediated induction of iNOS and TLR-2 gene expression. Our ex vivo findings reveal inhibition of MyD88 via counteraction of IL-1-mediated proteoglycan depletion. The findings from this study demonstrate the potent anti-inflammatory and anti-catabolic effects of inhibition of MyD88 pathway inhibition on IVD homeostasis, suggesting a potential therapeutic benefit of a MyD88i in degenerative disk disease in the future.  相似文献   
35.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   
36.

Background

16 can activate phospholipase Cβ (PLCβ) directly like Gαq. It also couples to tetratricopeptide repeat 1 (TPR1) which is linked to Ras activation. It is unknown whether PLCβ and TPR1 interact with the same regions on Gα16. Previous studies on Gαq have defined two minimal clusters of amino acids that are essential for the coupling to PLCβ. Cognate residues in Gα16 might also be essential for interacting with PLCβ, and possibly contribute to TPR1 interaction and other signaling events.

Results

Alanine mutations were introduced to the two amino acid clusters (246–248 and 259–260) in the switch III region and α3 helix of Gα16. Regulations of PLCβ and STAT3 were partially weakened by each cluster mutant. A mutant harboring mutations at both clusters generally produced stronger suppressions. Activation of Jun N-terminal kinase (JNK) by Gα16 was completely abolished by mutating either clusters. Contrastingly, phosphorylations of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) were not significantly affected by these mutations. The interactions between the mutants and PLCβ2 and TPR1 were also reduced in co-immunoprecipitation assays. Coupling between G16 and different categories of receptors was impaired by the mutations, with the effect of switch III mutations being more pronounced than those in the α3 helix. Mutations of both clusters almost completely abolished the receptor coupling and prevent receptor-induced Gβγ release.

Conclusion

The integrity of the switch III region and α3 helix of Gα16 is critical for the activation of PLCβ, STAT3, and JNK but not ERK or NF-κB. Binding of Gα16 to PLCβ2 or TPR1 was reduced by the mutations of either cluster. The same region could also differentially affect the effectiveness of receptor coupling to G16. The studied region was shown to bear multiple functionally important roles of G16.  相似文献   
37.
38.
Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5) that expresses enhanced jellyfish green fluorescent protein (EGFP), AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call "hollow ring structure", "filled ring structure", and "disperse pattern". An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the dynamics in local neighborhoods in the agent-based model can predict the outcome of the spatial virus-cell dynamics, which has important practical implications. This analysis provides a first step towards understanding spatial oncolytic virus dynamics, upon which more detailed investigations and further complexity can be built.  相似文献   
39.
Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus causing a contagious lung cancer of sheep. JSRV encodes unspliced and spliced viral RNAs, among which unspliced RNA encodes Gag and Pol proteins and a singly spliced mRNA encodes Env protein. In another study we found that JSRV encodes a regulatory protein, Rej, that is responsible for synthesis of Gag polyprotein from unspliced viral RNA. Rej is encoded in the 5′ end of env, and it enhances nuclear export or accumulation of cytoplasmic unspliced viral RNA in 293T cells but not in most other cell lines (A. Hofacre, T. Nitta, and H. Fan, J. Virol. 83:12483-12498, 2009). In this study, we found that mutations in the 3′ end of env in the context of a cytomegalovirus-driven full-length JSRV expression construct abolished Gag protein synthesis and released viruses in 293T cells. These mutants also showed deficits in accumulation of unspliced viral RNA in the cytoplasm. These mutants defined a Rej-responsive element (RejRE). Inhibition of CRM1 but not Tap function prevented nuclear export/accumulation of cytoplasmic unspliced RNA in 293T cells, similarly to other complex retroviruses that express analogous regulator proteins (e.g., human immunodeficiency virus Rev). Structural modeling of the RejRE with Zuker M-fold indicated a region with a predicted stable secondary structure. Mutational analysis in this region indicated the importance of both secondary structures and primary nucleotide sequences in a central stem-bulge-stem structure. In contrast to 293T cells, mutations in the RejRE did not affect the levels of cytoplasmic unspliced RNA in 293 cells, although the unspliced RNA showed partial degradation, perhaps due to lack of translation. RejRE-containing RNA relocalized Rej protein from the nucleus to the cytoplasm in 293 and rat 208F cells, suggesting binding of Rej to the RejRE.Jaagsiekte sheep retrovirus (JSRV) is a betaretrovirus that causes ovine pulmonary adenocarcinoma, an infectious lung tumor of sheep (10, 29). Ovine pulmonary adenocarcinoma has morphological resemblance to a human lung cancer, bronchioloalveolar carcinoma, which is only weakly associated with cigarette smoking. In recent years, complete infectious and oncogenic molecular clones of JSRV have been isolated (30). We and others found that the JSRV envelope (Env) protein also functions as an oncogene in that it can induce morphological transformation of fibroblast and epithelial cell lines in culture and tumors in animals (1, 24, 34). Further studies have demonstrated that amino acids in the cytoplasmic tail of the Env transmembrane (TM) protein are important for transformation, as are multiple domains in the surface (SU) protein (17, 18).The nuclear export of mRNA is a critical step in gene expression. All retroviruses employ unspliced genome-length RNA as mRNA for synthesis of Gag and Pol proteins, while splicing yields mRNA(s) for Env (and other) proteins (15). Thus, genome-length mRNA for Gag and Pol is equivalent to an unspliced precursor for Env mRNA. A key issue for retroviruses is how they transport unspliced genome-length RNA to the cytoplasm. This is accomplished by two general mechanisms. The human immunodeficiency virus type 1 (HIV-1) Rev protein (encoded by a doubly spliced mRNA) specifically binds to a Rev-responsive element (RRE), located in RNA of the env gene. The Rev/RRE complex recruits the cellular CRM1/Xpo1 protein (as well as other cellular proteins), which results in transport of this RNA-protein complex to the cytoplasm (7). Similarly, human T-cell leukemia virus type 1 (HTLV-1) Rex protein binds a Rex-responsive element on viral RNA, resulting in export via the CRM1 pathway (21). The betaretroviruses mouse mammary tumor virus (MMTV) and human endogenous retrovirus K (HERV-K) also encode analogous regulatory proteins (Rem and Rec, respectively) (19, 22, 27).In contrast, the betaretroviruses Mason-Pfizer monkey virus (MPMV) and simian retrovirus (SRV) contain constitutive RNA export elements (constitutive transport elements [CTEs]) that facilitate nuclear export of unspliced RNA (4, 41). The MPMV CTE is located between env and the 3′ long terminal repeat (LTR); it binds to the cellular trans-acting factor NXF1/Tap, which directs nuclear export of the RNA-protein complex to the cytoplasm (14). Rous sarcoma virus and the related avian leukosis viruses contain direct repeat sequences flanking the src gene or in the 3′ untranslated region of their RNA (28). Structure-function analyses of these RNA-exporting elements revealed specific stem-loop structures that are important for activity and for binding of the host cell factors (3).Like other betaretroviruses, JSRV contains the standard genes gag, pro, pol, and env. In addition we recently found that JSRV also encodes a regulatory factor, Rej (17a). Rej is reminiscent of MMTV Rem and HERV-K Rec in that it is encoded in the 5′ end of env and it is required for efficient synthesis of Gag protein. We found that Rej is required for translation of unspliced viral RNA, and in 293T cells it also enhances accumulation of cytoplasmic unspliced viral RNA in the cytoplasm. In the results presented here, we show that JSRV RNA also contains a Rej-responsive element (RejRE) in the 3′ end of env that is required for translation of Gag protein and efficient export or accumulation of unspliced viral RNA in the cytoplasm in 293T cells. Mutational analyses of RejRE based on M-fold suggest that both primary sequences and secondary structures in this region play important roles in nuclear export or accumulation of unspliced viral RNA in the cytoplasm and Gag synthesis. This accumulation is independent of Tap but dependent on CRM1. Moreover, Rej protein was exported from the nucleus to the cytoplasm in cells expressing wild-type JSRV RNA but not RejRE mutants, suggesting binding of Rej protein to the RejRE.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号