首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   2篇
  198篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   4篇
  1996年   6篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1985年   6篇
  1984年   2篇
  1983年   4篇
  1980年   4篇
  1979年   2篇
  1978年   5篇
  1975年   5篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1961年   2篇
  1959年   2篇
  1958年   3篇
  1956年   2篇
  1955年   5篇
  1954年   6篇
  1952年   2篇
  1949年   2篇
  1948年   3篇
  1928年   2篇
  1927年   1篇
  1926年   1篇
  1925年   2篇
  1924年   1篇
排序方式: 共有198条查询结果,搜索用时 0 毫秒
21.
22.
The inhibitory effects of PEG on whole-plant growth can exceed the effects of other osmolytes such as NaCI, and this has been ascribed to toxic contaminants, or to reduced oxygen availability in PEG solutions. We investigated another possibility, namely that PEG has an additional inhibitory effect on root water transport which in turn affects leaf development. The effects on first-leaf growth of applications of PEG 6000 or isoosmotic NaCI to the roots were determined using hydroponically grown maize (Zea mays L.) seedlings. Leaf growth rates were inhibited within minutes of PEG application to the roots and remained inhibited for days. The inhibitory effects on growth of NaCI, and also of KCl and mannitol, were much smaller. The comparative effects of NaCI and PEG on root water transport were determined by assaying pressurized flow through excised roots. PEG induced a 7-fold greater inhibition of flow through live roots than NaCI. Killing of the roots by heat treatment, to reduce cell membrane resistances to solute penetration, nearly doubled the flow rate for roots in NaCI, but not for roots in PEG. We suggest that the greater viscosity of PEG solutions, as compared with NaCI, may be a primary factor contributing to the additional inhibition of water flow through live and killed roots. PEG did not have additional effects on leaf turgor but had a 3 times greater inhibitory effect than NaCI on the irreversible extensibility of the leaves and induced 16 times more leaf accumulation of the growth inhibitory stress hormone abscisic acid (ABA). We conclude that greater inhibition of root water transport by PEG 6000, as compared with NaCI, leads to additional reductions in extensibility, additional ABA accumulation, and a greater inhibition of leaf growth.  相似文献   
23.
24.
The autoxidation of dopa to melanin in culture media causes toxicity to retinal pigment epithelial (RPE) cells and endothelial cells. The damage is specific to cell type and to the ambient oxygen concentration. To determine whether RPE cells influence the oxidation of dopa to media, we compared light absorbing dopa derivatives in the media exposed to cells with those found in the media incubated without cells. Dopa was extensively oxidized in the presence of RPE cells, and more light absorbing substances were generated with higher dopa and oxygen concentrations. However, an increase in ambient oxygen concentration decreased the quantity of several dopa derivatives which had been formed. The data provided evidence that RPE modulated dopa metabolism. Quinolic derivatives produced from a tyrosinase reaction and dopa-melanin formation moved the peak absorbance wavelength of dopa into the visible range. The spectrum between the dopa-derived compounds in the media has an absorbance at 240–275 nm and a maximum around 300 nm wth a shoulder near 375 nm. Gaussian analysis (peak separation) resolved these spectra into five components: a sharp band at 248 nm, a band at 295 nm, a large band at 359 nm, and two broad bands at 459 and 585 nm.  相似文献   
25.
26.
The possibility that changes in the plasticity of expanding cell walls are involved in regulating early leaf growth responses to nutrient deficiencies in monocot plants was investigated. Intact maize seedlings (Zea mays L.) which were hydroponically grown with their roots in low-nutrient solution (1 mol m?3 CaCl2) showed early inhibition of first-leaf growth, as compared with seedlings on complete nutrient solution. This early inhibition of leaf growth was not associated with reduced cell production. However, segmental elongation along the cell expansion zone at the base of the leaf and the lengths of mature epidermal cells were reduced by the low-nutrient treatment. Solute (osmotic) potentials in the expanding leaf tissues were unchanged. In contrast, low-nutrient treatments significantly altered leaf plasticity, i.e. the irreversible extension caused by applying a small force in the direction of leaf growth. For example, in vivo plasticity decreased, along with leaf growth, after transfer of seedlings from complete nutrient solution to low-nutrient solution for 15 h. Conversely, in vivo plasticity increased, along with leaf growth, after transfer of plants previously grown on low-nutrient solution to complete nutrient solution for 15 h. The nutrient treatments also induced similar changes in the in vitro plasticity of the expanding leaf cell walls. There were no consistent changes in elasticity. Thus, reductions in the plasticity of expanding leaf cell walls appear to be involved in controlling the early inhibition of maize leaf growth by root imposition of nutrient stress.  相似文献   
27.
Inbreeding, Incest, and the Incest Taboo: The State of Knowledge at the Turn of the Century . Arthur P. Wolf and William H. Durham, eds. Stanford: Stanford University Press, 2004. 228 pp.  相似文献   
28.
SYNOPSIS. Cryoprotectants were tested in both complex and semidefined media for the trypanosomatid Crithidia fasciculata. Near log-phase or end-of-log-phase cultures were frozen for 24–48 hr at ∼ -20 C, then warmed in air to room temperature. Immediate motility was correlated with viability. The best protectant of the 83 tested was glycerol at ∼ 10% (w/v). Survival without cryoprotectant was rare. Outstanding cryoprotectants (perhaps also useful solvents for drugs poorly soluble in water) were: ethylene glycol; 2,2'-dioxyethanol (diethylene glycol); 1,2,4-butanetriol; 1,4-cyclohexanediol; dimethylsulfoxide; propylene glycol; and N -acetylethanolamine. Several sugars were active, e.g., D-arabinose, sucrose, and sorbitol. Trypanosomes tolerated cryoprotectants much less; tolerance was better in growth media than in suspension media. Trypanosoma gambiense was grown in blood-enriched media + 2-2.5% glycerol, suspended in 20% (w/v) glycerol. then frozen; this permitted 3-week survival. T. conorhini survived 4 weeks after growth in media containing glycerol 2.5%+ ethylene glycol 4%+ rutin 1.0 mg per 100 ml.  相似文献   
29.
The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split‐pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night‐time transpiration, and although over the last decade it has become more widely recognized that night‐time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night‐time transpiration on HR. We developed and added a representation of night‐time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night‐time stomatal behaviour changed, both influencing HR.  相似文献   
30.
OXIDATION OF PHLORIDZIN BY ISOLATED CHLOROPLASTS   总被引:1,自引:0,他引:1  
Phloridzin was shown to be oxidized by chloroplast fragmentsfrom swiss-chard. From inhibitor studies, kinetics and affinitytoward oxygen, it was inferred that the oxidation was mediatedby a phenolase in a "cresolase" type reaction. Atebrin was foundto inhibit the enzymatic oxidation of phloridzin and of 4-methylcatechol. (Received November 2, 1966; )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号