首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   8篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   3篇
  1971年   2篇
  1959年   13篇
  1958年   20篇
  1957年   18篇
  1956年   18篇
  1955年   16篇
  1954年   20篇
  1953年   16篇
  1952年   13篇
  1951年   6篇
  1950年   4篇
  1949年   1篇
  1948年   3篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
25.
1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl3, UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H2O2, the thermodynamic constants of the activation process µ, ΔH‡, ΔS‡, ΔF‡, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of µ, ΔH‡, and ΔS‡ an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of ΔF‡ a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in the case of catalase, of desorbing the enzyme from the interface into its rolled-up, soluble, highly specific configuration. While the interfacial hypothesis has successfully withstood this experimental attack, the present data do not provide its unequivocal proof, since they are consistent with any hypothesis of alteration in which the unaltered, intracellular enzyme is in a relatively disordered state by comparison to the altered enzyme. While evidence of an interfacial process in enzyme alteration has been adduced previously, critical proof of the interfacial hypothesis awaits creation of a model system, in which most of the aspects of intracellular alteration can be reproduced. 6. Certain of the changes in kinetic properties following alteration of the intracellular enzyme, such as increased activity and the modified energies and entropies of activation of both enzyme-substrate system and heat destruction of the catalase itself, might be explained by a decrease (two orders of magnitude) in the effective hydrogen ion concentration, allowing the intracellular enzyme to be brought to the same pH as the extracellular medium. If such a pH change does, in fact, occur, it is necessary to invoke the interfacial hypothesis to explain why the unaltered, intracellular enzyme is in equilibrium with a medium whose pH is approximately 2 units lower than that of the cytoplasm itself. 7. It is concluded that kinetic data of this kind may be used to shed light on the structure of a soluble, cytoplasmic enzyme, not attached to any of the formed elements within the cell, yet organized within it in a condition of relatively low structural specificity; further, that information obtained exclusively from a study of the kinetics of the extracted or crystalline enzymes may not, in the case of this enzyme, at least, be extrapolated to the same enzyme within the intact cell.  相似文献   
26.
27.
In bronchography, the oil often does not fill all bronchial branches. Films taken 30 to 60 minutes later frequently complete the opacification of bronchi in lingula, middle lobe and lower lobes. Such delayed films may demonstrate bronchiectasis not shown initially, or may exclude bronchiectasis suspected on the first films.  相似文献   
28.
The airborne ragweed pollen spectrum was investigated in the air of Ankara, Turkey for aperiod of ten years (1990-1999) using a Burkard seven-day volumetric recording trap. In our study period,long distance transported Ambrosia pollen has been registered. Daily pollen levels varied from low to highin Burge's system. In last three years, the pollen concentration of Ambrosia showed a clear increasingtendency. Our results prove that ragweed pollen may be an important threat for ragweed sensitive patientsin Ankara city in near future.  相似文献   
29.
30.
We have previously described a developmentally regulated mRNA in maize that accumulates in mature embryos and is involved in a variety of stress responses in the plant. The sequence of the encoded 16 kDa protein (MA16) predicts that it is an RNA-binding protein, since it possesses a ribonucleoprotein consensus sequence-type RNA-binding domain (CS-RBD). To assess the predicted RNA binding property of the protein and as a starting point to characterize its function we have used ribohomopolymer-binding assays. Here we show that the MA16-encoded protein binds preferentially to uridine- and guanosine-rich RNAs. In light of these results a likely role for this protein in RNA metabolism during late embryogenesis and in the stress response is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号