首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
  2013年   7篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1989年   2篇
  1983年   1篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1955年   1篇
  1953年   1篇
  1952年   2篇
  1951年   1篇
  1950年   2篇
  1948年   1篇
  1934年   1篇
  1930年   1篇
排序方式: 共有83条查询结果,搜索用时 62 毫秒
21.
Phenylalanine uptake in Chlorella fusca was measured, using the membrane filter technique. The cells were synchronized, and harvested at specific points of the life cycle. Experiments with autospores showed that the uptake followed saturation kinetics, with a Km= 5 μM. Vmax, was 0.1 nmol/min × 107 cells. The optimum temperature for the uptake was 40°C, and the activation energy was 1700 J/mol. The uptake showed a high specificity towards l -phenylalanine; presence of the unlabelled stereoisomer did not inhibit the uptake. Uptake of l -phenylalanine was inhibited in the presence of other analogues or other amino acids, but only if they were present in concentrations considerably higher than that of L-phenylalanine. Variations in the ratio of Na4+ to K+ in the external solution during uptake experiments did not have any influence upon the uptake rate of l -phenylalanine. The cells were able to take up the amino acid against a concentration gradient. At pool maximum the ratio between internal and external amino acid concentration was 1000/1. 2,4-Dinitro-phenol inhibited the uptake completely. Exchange between internal and external l -phenylalanine could not be demonstrated. The Km value did not change during the life cycle of the cells. The uptake rate reached a maximum at the end of the light period, and fell to a minimum just before sporulation started. It is concluded that Chlorella fusca cells have a highly specific, active uptake system for l -phenylalanine. The system is constitutive, independent on the K or Na concentration, and the mechanism of uptake does not change during the life cycle of the cells.  相似文献   
22.
23.
1. Lake eutrophication has increased phytoplankton blooms and sediment organic matter. Among higher plants, small, oligotrophic rosette species (isoetids) have disappeared, while a few tall, eutrophic species (elodeids) may have persisted. Despite recent reduction of nutrient loading in restored lakes, the vegetation has rarely regained its former composition and coverage. Patterns of recovery may depend on local alkalinity because HCO3? stimulates photosynthesis of elodeids and not of isoetids. In laboratory growth experiments with two isoetids (Lobelia dortmanna and Littorella uniflora) and two elodeids (Potamogeton crispus and P. perfoliatus), we test whether organic enrichment of lake sediments has a long‐lasting influence by: (i) reducing plant growth because of oxygen stress on plant roots and (ii) inhibiting growth more for isoetids than elodeids. We also test whether (iii) increasing alkalinity (from 0.17 to 3.20 meq. L?1) enhances growth and reduces inhibition of organic sediment enrichment for elodeids but not for isoetids. 2. In low organic sediments, higher oxygen release from roots of isoetids than elodeids generated oxic conditions to greater sediment depth for Lobelia (4.3 cm) and Littorella (3.0 cm) than for Potamogeton species (1.6–2.2 cm). Sediment oxygen penetration depth fell rapidly to 0.4–1.0 cm for all four species at even modest organic enrichment and oxygen consumption in the sediments. Roots became shorter and isoetid roots became thicker to better supply oxygen to apical meristems. 3. Growth of elodeids was strongly inhibited across all levels of organic enrichment of sediments being eight‐fold lower at the highest enrichment compared to the unenriched control. Leaf biomass of isoetids increased three‐fold by moderate organic enrichment presumably because of greater CO2 supply from sediments being their main CO2 source. At higher organic enrichment, isoetid biomass was reduced, leaf chlorophyll declined up to 10‐fold, root length declined from 7 to <2 cm and mortality rose (up to 50%) signalling high plant stress. 4. Lobelia was not affected by HCO3? addition in accordance with its use of sediment CO2. Biomass of elodeids increased severalfold by rising alkalinity from 0.17 to 3.20 meq. L?1 in accordance with their use of HCO3? for photosynthesis, while the negative impact of organically enriched sediments remained. 5. Overall, root development of all four species was so strongly restricted in sediments enriched with labile organic matter that plants if growing in situ may lose root anchorage. Other experiments demonstrate that this risk is enhanced by greater water content and reduced consolidation in organically rich sediments. Therefore, formation of more muddy and oxygen‐demanding sediments during eutrophication will impede plant recovery in restored lakes while high local alkalinity will help elodeid recovery.  相似文献   
24.
Carbon isotopic abundances have been measured for more than one hundred samples of fossil plants ranging in age from middle Triassic to late Tertiary. Most of the plant fossils were identified at the specific or generic level and were selected as representing a variety of continental environments, including xeric and humid habitats. Material analysed included numerous fragments of flowers, seeds, fruits, leaves and wood, as well as a single amorphous lignite sample. The analyses performed for the plant fragments indicate relatively constant isotopic compositions during this time interval, with plant δ13C values ranging between -28 and -20%. These values are within the range for living terrestrial plants with C3, photosynthesis, although values more positive than -23% are rare in C3 plants and typically found in plants growing under environmental stress. Lower δ13C values might have been expected owing to the much higher CO2, levels of the Cretaceous atmosphere that have been inferred from marine carbonates. No fossils with values indicating C4, photosynthesis were discovered. Fossil plants from inferred mesic environments showed δ13C values ranging between -26.7 and -24.1%. Highest δ13C values in angiosperms (up to -20.1%) were measured for Late Cretaceous combretaceous flowers from Portugal. Some cheirolepidiaceous conifers from the Early Cretaceous also showed high δ13C values. Values measured for Pseudofrenelopsis varians and Glenrosa taxensis were -21.9%, and values of gymnosperm wood, probably of cheirolepidiaceous affinity, were -19.0%. These high values are in accordance with inferred ecological conditions for the fossil plants. They may suggest a tendency for C4,-like photosynthesis, although the data are equivocal. Higher values (-17.3%) clearly falling outside the C3, range were, however, obtained from a single lignite fragment of Late Cretaceous (Maastrichtian) age. The nature of this plant fragment is unknown, but the result suggests that C4-like photosynthesis was present at least in some latest Cretaceous vegetation. A hadrosaurian dinosaur with well-preserved collagen-like organic matter from the same deposit showed δ13C values around-16%, which also suggests the presence of CAM or even C4 plants in the latest Cretaceous. □Carbon isotopic abundances, δ13C values, dinosaurs, plants, photosynthetic pathways, Mesozoic.  相似文献   
25.
26.
27.
A new fluid/structure-interaction finite element formulation is reported, by means of which reactive fluid stresses can be determined for what is currently the most widely used laboratory apparatus (; the Flexercell Strain Unit ) for delivering controlled in vitro mechanical stimuli to cultured cells. The apparatus functions by means of cyclic vacuum application to the undersurface of a membrane-like circular rubber substrate. When operated in Us original embodiment ( i.e., without axial constraint to substrate motion), the pulsatile vacuum causes appreciable pulsatile excursions ( often several millimeters) of the substrate. The mechanical stimuli experienced by cells attached atop the substrate include not only substrate distention, but also potentially confounding reactive fluid stresses due to coupled motions of the overlying liquid culture nutrient medium. Since it is impractical to directly measure reactive fluid stress in such environments, a corresponding mathematical model has been developed. The formulation involves transient continuum finite element solutions for the nutrient medium flow field and for the deformation of the substrate, coupled at their mutual interface ( the substrate culture surface) Besides the nonlinearities inherent in the flow field and substrate treatments per se, the numerical problem is complicated by the presence of moving boundaries at the nutrient free surface and at the nutrient/substrate interface, as well as by the need to enforce fluid/structure interaction throughout the duty cycle. Algorithmic considerations appropriate to achieving physically realistic numerical performance are reported, and a confirmatory laboratory validation experiment is described.  相似文献   
28.
1. Arbuscular mycorrhizal fungi (AMF) commonly colonise isoetid species inhabiting oxygenated sediments in oligotrophic lakes but are usually absent in other submerged plants. We hypothesised that organic enrichment of oligotrophic lake sediments reduces AMF colonisation and hyphal growth because of sediment O2 depletion and low carbon supply from stressed host plants. 2. We added organic matter to sediments inhabited by isoetids and measured pore‐water chemistry (dissolved O2, inorganic carbon, Fe2+ and ), colonisation intensity of roots and hyphal density after 135 days of exposure. 3. Addition of organic matter reduced AMF colonisation of roots of both Lobelia dortmanna and Littorella uniflora, and high additions stressed the plants. Even small additions of organic matter almost stopped AMF colonisation of initially un‐colonised L. uniflora, though without reducing plant growth. Mean hyphal density in sediments was high (6 and 15 m cm?3) and comparable with that in terrestrial soils (2–40 m cm?3). Hyphal density was low in the upper 1 cm of isoetid sediments, high in the main root zone between 1 and 8 cm and positively related to root density. Hyphal surface area exceeded root surface area by 1.7–3.2 times. 4. We conclude that AMF efficiently colonise isoetids in oligotrophic sediments and form extensive hyphal networks. Small additions of organic matter to sediments induce sediment anoxia and reduce AMF colonisation of roots but cause no apparent plant stress. High organic addition induces night‐time anoxia in both the sediment and the plant tissue. Tissue anoxia reduces root growth and AMF colonisation, probably because of restricted translocation of nutrient ions and organic solutes between roots and leaves. Isoetids should rely on AMF for P uptake on nutrient‐poor mineral sediments but are capable of growing without AMF on organic sediments.  相似文献   
29.
30.
There is widespread interest in developing methods to investigate in situ microbial activity in subsurface environments. Novel experiments based on single borehole push–pull methods were conducted to measure in situ microbial activity at the Äspö Hard Rock Laboratory (HRL). Microbial nitrate reduction and lactate consumption were measured at in situ conditions at a depth of 450 m in the HRL tunnel. A circulation system was used to circulate ground water from the aquifer through pressure‐maintaining flow cells containing coupons for biofilm growth. The system allows microbial investigations at in situ pressure, temperature and chemistry. Four experiments were conducted in which a combination of a conservative tracer, nitrate and lactate was injected into the circulation system. Rate of nitrate utilization was 5 µm  h?1 without lactate and 13 µm  h?1 with lactate. Lactate consumption increased from 30  to 50 µm  h?1 with the addition of an exogenous electron acceptor (nitrate). Attached and unattached cells were enumerated using epifluorescence microscopy to calculate cell‐specific rates of activity. The biofilm had an average cell density of 1 × 106 cells cm?2 and there was an average of 6 × 105 unattached cells mL?1 in circulation. Cell‐specific rates of lactate consumption were higher than previously reported using radiotracer methods in similar environments. The differences highlight the importance of conducting microbial investigations at in situ conditions. The results demonstrate that an indigenous community of microbes survives at a depth of 450 m in the Fennoscandian shield aquifer with the potential to oxidize simple organic molecules such as lactate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号