首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   21篇
  国内免费   4篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   9篇
  2011年   7篇
  2010年   5篇
  2009年   11篇
  2008年   6篇
  2007年   10篇
  2006年   8篇
  2005年   4篇
  2004年   8篇
  2003年   8篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1916年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
31.
Heavy metal tolerant Silene vulgaris plants, originating from different metalliferous sites in Germany and one in Ireland, were crossed to each other and to nontolerant plants from a nonmetalliferous site in The Netherlands. Analysis of the crosses suggested that there were two distinct major gene loci for zinc tolerance among a total of five tolerant populations. The tolerance loci for zinc, copper, and cadmium in the Irish plants were shown to be identical with those in the German populations. It is argued that the occurrence of common major genes for tolerance among different geographically isolated populations must have resulted from independent parallel evolution in local nontolerant ancestral populations. Each of the tolerances studied seems to be controlled by only a few specific major genes.  相似文献   
32.
Accumulation of free proline in response to Cu, Cd and Zn was studied in nontolerant and metal-tolerant Silene vulgaris (Moench) Garcke. In the nontolerant ecotype these metals induced a massive accumulation of proline, especially in the leaves. When compared at equimolar concentrations in the nutrient solution, Cu was the most effective inducer, followed by Cd and Zn, respectively. However, when compared at equal toxic strength, as estimated from the degree of root growth inhibition, proline accumulation decreased in the order Cd > Zn > Cu. The threshold exposure levels for proline accumulation coincided with the highest no-effect-concentrations for root growth. In the metal-tolerant ecotype the constitutive proline concentration in the leaves was 5 to 6 times higher than in the nontolerant ecotype. Exposure to Cu and Zn, however, was without any effect on the leaf proline concentration, even at exposure levels that caused a 50% root growth inhibition. Only Cd, when present at concentrations above the highest no-effect-concentration for root growth, induced a further increase of the leaf proline content. Reducing transpiration by placing the plants under a transparent polyethylene cover almost completely inhibited proline accumulation, even at metal accumulation rates in the leaves that caused a 10-fold increase of the proline level in leaves of uncovered plants. The results demonstrate that metal-induced proline accumulation depends on the development of a metal-induced water deficit in the leaves. Differential metal-induced proline accumulation in distinctly metal-tolerant ecotypes is a consequence, rather than a cause of differential metal tolerance.  相似文献   
33.
The relation between copper tolerance and the sensitivity of plants with respect to the effect of copper on the plasmalemma of root cells was studied using plants from one copper sensitive and two copper tolerant populations of Silene cucubalus Wib. In each population, the external copper concentration needed to induce ion leakage (a measure of damage to the permeability barrier) was similar to the highest no-effect-concentration of copper for root growth in that population. At higher concentrations, the degree of root growth inhibition paralleled the rate of ion leakage, the degree of trypan blue staining (a measure of plasmalemma integrity) and the accumulation of lipid peroxidation products. The amount of copper taken up by the plants was inversely related to their level of copper tolerance. Compared to copper sensitive plants, copper tolerant plants showed no increased resistance to either the sulfhydryl reagent N-ethylmaleimide or the free radical-producing compound cumene hydroperoxide.
These results indicate that damage to the permeability barrier of root cells constitutes the primary effect of copper toxicity in both sensitive and tolerant plants, and that copper tolerance is coupled to the ability of the plants to prevent such damage. This ability might depend on exclusion of copper by the root cell plasmalemma.  相似文献   
34.
35.
36.
Sargassum hemiphyllum is commonly found in Japan and Korea, with a variety, var. chinense, that is found distributed in the southern Chinese coast. We previously reported distinct genetic differentiation between the two taxa based on the PCR‐RFLP data of plastid RubiscoL‐S spacer. The present study aims at elucidating the phylogeographic pattern of S. hemiphyllum based on more markers in the nuclear and extranuclear genomes, with a view to reveal the occurrence of hybridization. The two allopatrically distributed taxa were found to be genetically distinct in nuclear ITS2, plastidial Rubisco (Rbc) and mitochondrial TrnW_I (Trn) spacers. Their divergence was postulated to be attributable to the vicariant event which resulted from the isolation of the Sea of Japan during the late Miocene (6.58–11.25 Mya). Divergence within both S. hemiphyllum and the chinense variety was observed based on Trn spacer, while the divergence in S. hemiphyllum was further confirmed in Rbc spacer. This divergence appears to correspond to the separation of the Japanese populations between the Sea of Japan and the Pacific that occurred around 0.92–2.88 Mya (the early Pleistocene). The presence of an ITS2 clone resembling var. chinense sequences in a Japanese population of S. hemiphyllum (JpNS) raises the possibility of the introgression of var. chinense individuals into S. hemiphyllum population. Compared to that between S. hemiphyllum and the chinense variety, hybridization among the Japanese and Korean populations of S. hemiphyllum is highly probable as all these individuals share a pool of nuclear ITS2 sequences, possibly attributable to incomplete concerted evolution of ITS2.  相似文献   
37.
Many animal lineages exhibit allometry in sexual size dimorphism (SSD), known as ‘Rensch’s rule’. When applied to the interspecific level, this rule states that males are more evolutionary plastic in body size than females and that male‐biased SSD increases with body size. One of the explanations for the occurrence of Rensch’s rule is the differential‐plasticity hypothesis assuming that higher evolutionary plasticity in males is a consequence of larger sensitivity of male growth to environmental cues. We have confirmed the pattern consistent with Rensch’s rule among species of the gecko genus Paroedura and followed the ontogeny of SSD at three constant temperatures in a male‐larger species (Paroedura picta). In this species, males exhibited larger temperature‐induced phenotypic plasticity in final body size than females, and body size and SSD correlated across temperatures. This result supports the differential‐plasticity hypothesis and points to the role phenotypic plasticity plays in generating of evolutionary novelties.  相似文献   
38.
The molecular mechanisms by which plants sense their micronutrient status, and adapt to their environment in order to ensure a sufficient micronutrient supply, are poorly understood. Zinc is an essential micronutrient for all living organisms. when facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation were recently identified. in this mini-review, we highlight recent progress in understanding the adaptation to zinc deficiency in plants and discuss the future challenges to fully unravel its molecular basis.Key words: adaptation, zinc deficiency, biofortification, molecular regulators, plant nutritionIn an increasingly populated world, agricultural production is an essential element of social development. Agriculture is the primary source of all nutrients required for human life, and nutrient sufficiency is the basis for good health and welfare of the human population.1 Soils with zinc deficiency are widespread in the world, affecting large areas of cultivated soils in India, Turkey, China, Brazil and Australia,2,3 making zinc the most common crop micronutrient deficiency.4 In addition, risk of inadequate zinc diet and zinc malnutrition are estimated to affect one-third of the global human population, i.e., around two billion people.5 Most affected are people living in developing countries, where diets are rich in cereal-based foods. Cereal grains are rich in phytate, which is a potent anti-nutrient, limiting micronutrient bioavailability.6 Zinc deficiency in crop production can be easily ameliorated through zinc fertilization, making agronomic biofortification an important strategy,3 however in the poorer regions, the required infrastructure to provide a reliable supply of zinc fertilizers of sufficient quality, is often not available. In those situations, biofortified crops, in which the zinc status of crops is genetically improved by selective breeding or via biotechnology, offer a rural-based intervention that will more likely reach the population.7 Different traits can be targeted to developing such improved crops, such as plant zinc deficiency tolerance, zinc use efficiency and the accumulation of zinc in edible parts. However, insufficient knowledge on the molecular mechanisms and the regulation of the zinc homeostasis network in plants is a serious bottleneck when pursuing zinc biofortification.  相似文献   
39.
40.
We describe the isolation of an Arabidopsis gene that is closely related to the animal ZnT genes (Zn transporter). The protein encoded by the ZAT (Zn transporter of Arabidopsis thaliana) gene has 398 amino acid residues and is predicted to have six membrane-spanning domains. To obtain evidence for the postulated function of the Arabidopsis gene, transgenic plants with the ZAT coding sequence under control of the cauliflower mosaic virus 35S promoter were analyzed. Plants obtained with ZAT in the sense orientation exhibited enhanced Zn resistance and strongly increased Zn content in the roots under high Zn exposure. Antisense mRNA-producing plants were viable, with a wild-type level of Zn resistance and content, like plants expressing a truncated coding sequence lacking the C-terminal cytoplasmic domain of the protein. The availability of ZAT can lead to a better understanding of the mechanism of Zn homeostasis and resistance in plants.Several heavy metals are essential during plant growth and development, but their excess can easily lead to toxic effects. Contamination of soils with heavy metals, either by natural causes or due to pollution, often has pronounced effects on the vegetation, resulting in the appearance of metallophytes, heavy-metal-tolerant plants. The precise mechanisms of uptake, transport, and accumulation of heavy metals in plants are poorly understood, but several genes likely to be involved in these processes have been described. Recently, a family of ZIP genes that are expressed in roots upon Zn deficiency was isolated from Arabidopsis (Grotz et al., 1998). The proteins encoded by the ZIP genes have eight predicted TM regions and a high degree of similarity to the ZRT genes from yeast that are involved in Zn uptake. Expression of the ZIP genes in yeast conferred Zn-uptake activities to these cells, demonstrating that they are probably functional homologs of the yeast ZRT genes (Grotz et al., 1998). The only other metal-transporting protein recently identified in plants belongs to the large family of cation-transporting P-type ATPases (Tabata et al., 1997), but these proteins are structurally very different from the metal-transporting proteins mentioned above.Recent data have provided more insight into the mechanisms of heavy-metal tolerance. Metallophytes often exhibit tolerance to several different heavy metals, but all of these metals need not be present at toxic levels in their habitat (Schat and ten Bookum, 1992a; Schat and Vooijs, 1997, and refs. therein; Schat and Verkleij, 1998). Although such a feature is suggestive of a general mechanism of heavy-metal tolerance, recent genetic evidence has shown that a number of different mechanisms must exist, each with its own metal specificity (Schat and Vooijs, 1997). In Arabidopsis, a plant species with a typical level of tolerance to heavy metals, it has been demonstrated that the Cd-sensitive mutants cad1 and cad2 are defective in the synthesis of the metal-binding compound phytochelatin (Howden et al., 1995). cad1 plants were only slightly more sensitive to Cu and Zn, indicating that phytochelatin-mediated detoxification is not sufficient for Cu and Zn detoxification (Howden et al., 1995b). Metallothioneins appear to be of major importance for constitutive Cu tolerance in Arabidopsis (Zhou and Goldsbrough, 1994).Aside from complexation of heavy metals by heavy-metal-binding proteins, there is evidence that transport-mediated sequestration can contribute to heavy-metal tolerance. In the Zn-tolerant plant Silene vulgaris it was shown that Zn transport across the tonoplast was about 2.5 times higher than in Zn-sensitive plants of the same species (Verkleij et al., 1998). The ZRC1 gene from the yeast Saccharomyces cerevisiae encodes a protein with six putative TM regions; when overexpressed, this gene confers elevated resistance to Zn and Cd (Kamizono et al., 1989). A structurally very similar gene, COT1, was later found to be involved in Co accumulation in yeast (Conklin et al., 1992).Recently, several genes homologous to ZRC1 and COT1 have been described in mammalian cells. The first gene discovered, ZnT-1 (Zn transporter 1), was cloned by virtue of its ability to complement a mutated, Zn-sensitive cell line (Palmiter and Finley, 1995). Subsequently, ZnT-2 (Palmiter et al., 1996), ZnT-3 (Wenzel et al., 1997), and ZnT-4 (Huang and Gitschier, 1997) have been described. The ZnT-1 protein most likely transports Zn out of the cells (Palmiter and Finley, 1995), whereas ZnT-2 confers Zn resistance by facilitating vesicular sequestration (Palmiter et al., 1996a). Other proteins related to yeast ZRC1/COT1 and mammalian ZnT have been found in several bacteria; for example, the CzcD protein from Alcaligenes eutrophus might be involved in Zn efflux (Nies, 1992).A family of proteins with six TM regions thus seems to be involved in the transport of heavy metals, mostly Zn, thereby conferring enhanced resistance toward these metals. To our knowledge, no plant homologs of this rather widespread gene family have yet been described. In this paper we describe an Arabidopsis cDNA clone encoding a protein closely related to the ZnT family of mammalian Zn transporters, demonstrating that plants do contain these types of genes. Experiments were performed to analyze the functional properties of the gene. We demonstrate that overexpression of the complete protein-coding domain results in enhanced Zn resistance and increased accumulation of Zn in the root. The relevance of these findings is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号