首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7322篇
  免费   904篇
  国内免费   8篇
  2021年   82篇
  2018年   91篇
  2017年   77篇
  2016年   115篇
  2015年   154篇
  2014年   211篇
  2013年   284篇
  2012年   307篇
  2011年   288篇
  2010年   189篇
  2009年   173篇
  2008年   257篇
  2007年   233篇
  2006年   236篇
  2005年   203篇
  2004年   216篇
  2003年   227篇
  2002年   200篇
  2001年   224篇
  2000年   219篇
  1999年   195篇
  1998年   97篇
  1997年   94篇
  1995年   90篇
  1994年   90篇
  1993年   77篇
  1992年   174篇
  1991年   170篇
  1990年   161篇
  1989年   154篇
  1988年   163篇
  1987年   139篇
  1986年   124篇
  1985年   161篇
  1984年   120篇
  1983年   115篇
  1982年   109篇
  1981年   87篇
  1980年   91篇
  1979年   139篇
  1978年   92篇
  1977年   92篇
  1976年   97篇
  1975年   89篇
  1974年   105篇
  1973年   95篇
  1972年   86篇
  1971年   78篇
  1969年   71篇
  1968年   64篇
排序方式: 共有8234条查询结果,搜索用时 593 毫秒
861.
Voltage-dependent G protein (Gbetagamma) inhibition of N-type (CaV2.2) channels supports presynaptic inhibition and represents a central paradigm of channel modulation. Still controversial are the proposed determinants for such modulation, which reside on the principal alpha1B channel subunit. These include the interdomain I-II loop (I-II), the carboxy tail (CT), and the amino terminus (NT). Here, we probed these determinants and related mechanisms, utilizing compound-state analysis with yeast two-hybrid and mammalian cell FRET assays of binding among channel segments and G proteins. Chimeric channels confirmed the unique importance of NT. Binding assays revealed selective interaction between NT and I-II elements. Coexpressing NT peptide with Gbetagamma induced constitutive channel inhibition, suggesting that the NT domain constitutes a G protein-gated inhibitory module. Such inhibition was limited to NT regions interacting with I-II, and G-protein inhibition was abolished within alpha1B channels lacking these NT regions. Thus, an NT module, acting via interactions with the I-II loop, appears fundamental to such modulation.  相似文献   
862.
The cloaca serves as a common opening to the urinary and digestive systems. In most mammals, the cloaca is present only during embryogenesis, after which it undergoes a series of septation events leading to the formation of the anal canal and parts of the urogenital tract. During embryogenesis it is surrounded by skeletal muscle. The origin and the mechanisms regulating the development of these muscles have never been determined. Here, we show that the cloacal muscles of the chick originate from somites 30-34, which overlap the domain that gives rise to leg muscles (somites 26-33). Using molecular and cell labelling protocols, we have determined the aetiology of cloacal muscles. Surprisingly, we found that chick cloacal myoblasts first migrate into the developing leg bud and then extend out of the ventral muscle mass towards the cloacal tubercle. The development of homologous cloacal/perineal muscles was also examined in the mouse. Concordant with the results in birds, we found that perineal muscles in mammals also develop from the ventral muscle mass of the hindlimb. We provide genetic evidence that the perineal muscles are migratory, like limb muscles, by showing that they are absent in metd/d mutants. Using experimental embryological procedures (in chick) and genetic models (in chick and mouse), we show that the development of the cloacal musculature is dependent on proximal leg field formation. Thus, we have discovered a novel developmental mechanism in vertebrates whereby muscle cells first migrate from axially located somites to the pelvic limb, then extend towards the midline and only then differentiate into the single cloacal/perineal muscles.  相似文献   
863.
Mutations in T-box genes are the cause of several congenital diseases and are implicated in cancer. Tbx20-null mice exhibit severely hypoplastic hearts and express Tbx2, which is normally restricted to outflow tract and atrioventricular canal, throughout the heart. Tbx20 mutant hearts closely resemble those seen in mice overexpressing Tbx2 in myocardium, suggesting that upregulation of Tbx2 can largely account for the cardiac phenotype in Tbx20-null mice. We provide evidence that Tbx2 is a direct target for repression by Tbx20 in developing heart. We have also found that Tbx2 directly binds to the Nmyc1 promoter in developing heart, and can repress expression of the Nmyc1 promoter in transient transfection studies. Repression of Nmyc1 (N-myc) by aberrantly regulated Tbx2 can account in part for the observed cardiac hypoplasia in Tbx20 mutants. Nmyc1 is required for growth and development of multiple organs, including the heart, and overexpression of Nmyc1 is associated with childhood tumors. Despite its clinical relevance, the factors that regulate Nmyc1 expression during development are unknown. Our data present a paradigm by which T-box proteins regulate regional differences in Nmyc1 expression and proliferation to effect organ morphogenesis. We present a model whereby Tbx2 directly represses Nmyc1 in outflow tract and atrioventricular canal of the developing heart, resulting in relatively low proliferation. In chamber myocardium, Tbx20 represses Tbx2, preventing repression of Nmyc1 and resulting in relatively high proliferation. In addition to its role in regulating regional proliferation, we have found that Tbx20 regulates expression of a number of genes that specify regional identity within the heart, thereby coordinating these two important aspects of organ development.  相似文献   
864.
Transient capture of cells or model microspheres from flow over substrates sparsely coated with adhesive ligands has provided significant insight into the unbinding kinetics of leukocyte:endothelium adhesion complexes under external force. Whenever a cell is stopped by a point attachment, the full hydrodynamic load is applied to the adhesion site within an exceptionally short time-less than the reciprocal of the hydrodynamic shear rate (e.g., typically <0.01 s). The decay in numbers of cells or beads that remain attached to a surface has been used as a measure of the kinetics of molecular bond dissociation under constant force, revealing a modest increase in detachment rate at growing applied shear stresses. On the other hand, when detached under steady ramps of force with mechanical probes (e.g., the atomic force microscope and biomembrane force probe), P-selectin:PSGL-1 adhesion bonds break at rates that increase enormously under rising force, yielding 100-fold faster off rates at force levels comparable to high shear. The comparatively weak effect of force on tether survival in flow chamber experiments could be explained by a possible partition of the load amongst several bonds. However, a comprehensive understanding of the difference in kinetic behavior requires us to also inspect other factors affecting the dynamics of attachment-force buildup, such as the interfacial compliance of all linkages supporting the adhesion complex. Here, combining the mechanical properties of the leukocyte interface measured in probe tests with single-bond kinetics and the kinetics of cytoskeletal dissociation, we show that for the leukocyte adhesion complex P-selectin:PSGL-1, a detailed adhesive dynamics simulation accurately reproduces the tethering behavior of cells observed in flow chambers. Surprisingly, a mixture of 10% single bonds and 90% dimeric bonds is sufficient to fully match the data of the P-selectin:PSGL-1 experiments, with the calculated decay in fraction of attached cells still appearing exponential.  相似文献   
865.
Evolutionary biologists have long been interested in the processes influencing population differentiation, but separating the effects of neutral and adaptive evolution has been an obstacle for studies of population subdivision. A recently developed method allows tests of whether disruptive (ie, spatially variable) or stabilizing (ie, spatially uniform) selection is influencing phenotypic differentiation among subpopulations. This method, referred to as the F(ST) vs Q(ST) comparison, separates the total additive genetic variance into within- and among-population components and evaluates this level of differentiation against a neutral hypothesis. Thus, levels of neutral molecular (F(ST)) and quantitative genetic (Q(ST)) divergence are compared to evaluate the effects of selection and genetic drift on phenotypic differentiation. Although the utility of such comparisons appears great, its accuracy has not yet been evaluated in populations with known evolutionary histories. In this study, F(ST) vs Q(ST) comparisons were evaluated using laboratory populations of house mice with known evolutionary histories. In this model system, the F(ST) vs Q(ST) comparisons between the selection groups should reveal quantitative trait differentiation consistent with disruptive selection, while the F(ST) vs Q(ST) comparisons among lines within the selection groups should suggest quantitative trait differentiation in agreement with drift. We find that F(ST) vs Q(ST) comparisons generally produce the correct evolutionary inference at each level in the population hierarchy. Additionally, we demonstrate that when strong selection is applied between populations Q(ST) increases relative to Q(ST) among populations diverging by drift. Finally, we show that the statistical properties of Q(ST), a variance component ratio, need further investigation.  相似文献   
866.
The species-area-energy relationship   总被引:1,自引:0,他引:1  
Area and available energy are major determinants of species richness. Although scale dependency of the relationship between energy availability and species richness (the species-energy relationship) has been documented, the exact relationship between the species-area and the species-energy relationship has not been studied explicitly. Here we show, using two extensive data sets on avian distributions in different biogeographic regions, that there is a negative interaction between energy availability and area in their effect on species richness. The slope of the species-area relationship is lower in areas with higher levels of available energy, and the slope of the species-energy relationship is lower for larger areas. This three-dimensional species-area-energy relationship can be understood in terms of probabilistic processes affecting the proportions of sites occupied by individual species. According to this theory, high environmental energy elevates species' occupancies, which depress the slope of the species-area curve.  相似文献   
867.

Background  

Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning.  相似文献   
868.

Background  

Site-directed mutagenesis is a widely-used technique for introducing mutations into a particular DNA sequence, often with the goal of creating a point mutation in the corresponding amino acid sequence but otherwise leaving the overall sequence undisturbed. However, this method provides no means for verifying its success other than sequencing the putative mutant construct: This can quickly become an expensive method for screening for successful mutations. An alternative to sequencing is to simultaneously introduce a restriction site near the point mutation in manner such that the restriction site has no effect on the translated amino acid sequence. Thus, the novel restriction site can be used as a marker for successful mutation which can be quickly and easily assessed. However, finding a restriction site that does not disturb the corresponding amino acid sequence is a time-consuming task even for experienced researchers. A fast and easy to use computer program is needed for this task.  相似文献   
869.
An integrated protein concentration/separation platform, combining capillary isoelectric focusing (CIEF) with nano-reversed phase liquid chromatography (nano-RPLC), is developed to provide significant protein concentration and high resolving power for the analysis of complex protein mixtures. Upon completion of protein focusing, the proteins are sequentially and hydrodynamically loaded into individual trap columns using a group of microinjection and microselection valves. Repeated pro-tein loadings and injections into trap columns are carried out automatically until the entire CIEF cap-illary content is sampled and fractionated. Each CIEF fraction "parked" in separate trap columns is further resolved using nano-RPLC, and the eluants are analyzed using electrospray ionization-mass spectrometry.  相似文献   
870.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号