首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7324篇
  免费   908篇
  国内免费   8篇
  8240篇
  2021年   82篇
  2018年   91篇
  2017年   77篇
  2016年   115篇
  2015年   154篇
  2014年   211篇
  2013年   284篇
  2012年   307篇
  2011年   288篇
  2010年   189篇
  2009年   173篇
  2008年   257篇
  2007年   233篇
  2006年   236篇
  2005年   203篇
  2004年   216篇
  2003年   227篇
  2002年   200篇
  2001年   224篇
  2000年   219篇
  1999年   195篇
  1998年   97篇
  1997年   94篇
  1995年   90篇
  1994年   90篇
  1993年   77篇
  1992年   174篇
  1991年   170篇
  1990年   161篇
  1989年   154篇
  1988年   163篇
  1987年   139篇
  1986年   124篇
  1985年   161篇
  1984年   120篇
  1983年   115篇
  1982年   109篇
  1981年   87篇
  1980年   91篇
  1979年   139篇
  1978年   92篇
  1977年   92篇
  1976年   97篇
  1975年   89篇
  1974年   105篇
  1973年   95篇
  1972年   86篇
  1971年   78篇
  1969年   71篇
  1968年   64篇
排序方式: 共有8240条查询结果,搜索用时 0 毫秒
801.
Microarray analysis of tumour RNA is an extremely powerful tool which allows global gene expression to be measured. When used in combination with neoadjuvant treatment protocols in which therapy is given with the primary tumour within the breast, sequential biopsies may be analysed and results correlated with clinical and pathological response. In the present study, a neoadjuvant protocol has been used, administering the third generation inhibitor, letrozole, for 3 months and subjecting RNA extracted from biopsies taken before and after 10–14 days of treatment to microarray analysis. The objectives were to discover: (i) genes that change with estrogen deprivation (the only known biological effect of letrozole is to inhibit aromatase activity and reduce endogenous estrogens in postmenopausal women) and (ii) genes whose basal, on treatment or change in expression differ between tumours which are either responsive or resistant to treatment (so that predictive indices of response/resistance may be developed).

Early changes in gene expression were identified by comparing paired tumour core biopsies taken before and after 14 days treatment in 58 patients using three different approaches based on frequency of changes, magnitude of changes and SAM analysis. All three approaches showed a greater number of genes were down-regulated than up-regulated. Merging of the data produced a total of 143 genes which were subject to gene ontology and cluster analysis. The ontology of the 91 down-regulated genes showed that they were functionally associated with cell cycle progression, particularly mitosis. In contrast, up-regulated genes were associated with organ development and extra-cellular matrix turnover and regulation.

Clinical response was assessable in 52 patients; 37 (71%) tumours were classified as clinical responders (>50% reduction in volume at 3 months). Microarray analysis of pre- and 14-day biopsies identified 291 covariates (84 baselines, 72 14-day and 135 changes) highly predictive of response status. A similarity matrix using the covariates showed responding tumours have a similar genetic profile which was dissimilar to non-responding cancers whereas non-responsive cases were distinctive from each other. Changed genes predicting for response showed no concordance with those changed significantly by treatment in the overall group.  相似文献   

802.
Although ectopic expression of 25-hydroxyvitamin D3-1α-hydroxylase (1α-OHase) has been recognized for many years, the precise function of this enzyme outside the kidney remains open to debate. Three specific aspects of extra-renal 1α-OHase have attracted most attention: (i) expression and regulation in non-classical tissues during normal physiology; (ii) effects on the immune system and inflammatory disease; (iii) expression and function in tumors. The most well-recognized manifestation of extra-renal 1α-OHase activity remains that found in some patients with granulomatous diseases where locally synthesized 1α,25(OH)2D3 has the potential to spill-over into the general circulation. However, immunohistochemistry and mRNA analyses suggest that 1α-OHase is also expressed by a variety of normal human tissues including the gastrointestinal tract, skin, vasculature and placenta. This has promoted the idea that autocrine/paracrine synthesis of 1,25(OH)2D3 contributes to normal physiology, particularly in mediating the potent effects of vitamin D on innate (macrophage) and acquired (dendritic cell) immunity. We have assessed the capacity for synthesis of 1,25(OH)2D3 in these cells and the functional significance of autocrine responses to 1α-hydroxylase. Data suggest that local synthesis of 1,25(OH)2D3 may be a preferred mode of response to antigenic challenge in many tissues.  相似文献   
803.
Wan Y  Chong LW  Evans RM 《Nature medicine》2007,13(12):1496-1503
Osteoclasts are bone-resorbing cells derived from hematopoietic precursors of the monocyte-macrophage lineage. Regulation of osteoclast function is central to the understanding of bone diseases such as osteoporosis, rheumatoid arthritis and osteopetrosis. Although peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been shown to inhibit osteoblast differentiation, its role, if any, in osteoclasts is unknown. This is a clinically crucial question because PPAR-gamma agonists, "such as thiazolidinediones-" a class of insulin-sensitizing drugs, have been reported to cause a higher rate of fractures in human patients. Here we have uncovered a pro-osteoclastogenic effect of PPAR-gamma by using a Tie2Cre/flox mouse model in which PPAR-gamma is deleted in osteoclasts but not in osteoblasts. These mice develop osteopetrosis characterized by increased bone mass, reduced medullary cavity space and extramedullary hematopoiesis in the spleen. These defects are the result of impaired osteoclast differentiation and compromised receptor activator of nuclear factor-kappaB ligand signaling and can be rescued by bone marrow transplantation. Moreover, ligand activation of PPAR-gamma by rosiglitazone exacerbates osteoclast differentiation in a receptor-dependent manner. Our examination of the underlying mechanisms suggested that PPAR-gamma functions as a direct regulator of c-fos expression, an essential mediator of osteoclastogenesis. Therefore, PPAR-gamma and its ligands have a previously unrecognized role in promoting osteoclast differentiation and bone resorption.  相似文献   
804.
Monitoring of populations of a target weed species prior to releasing natural enemies has the potential to improve the rigor and safety of biological control and to determine the invader’s impacts on native communities while creating a reference point for evaluating the efficacy of subsequent biocontrol agent releases. Eight populations of garlic mustard, Alliaria petiolata (M. Bieb) Cavara and Grande (Brassicaceae), an invasive weed in southern Michigan, were monitored in anticipation of releases of classical biological control agents. The A. petiolata populations were shown to be expanding with 44.4% of initially uninvaded sampling quadrats becoming invaded after four years. While 88.2% of quadrats with A. petiolata showed evidence of foliar damage from pathogens and browsing by mammals, insects and other invertebrates, levels of damage were low and had little impact on rosette or seedling survival. Contrary to expectations, damage was positively correlated with A. petiolata fecundity (P = 0.0465). Given the continued expansion of A. petiolata and the lack of significant herbivore damage by acquired natural enemies, a biological control program should be considered against this invasive plant. If biological control agents are released, the results of this study will provide a benchmark for evaluating their performance.  相似文献   
805.
The ability of Streptococcus agalactiae and Streptococcus iniae to attract macrophages of Nile tilapia (Oreochromis niloticus) was investigated. The extracellular products (ECP) from S. agalactiae and S. iniae were tested in vitro for macrophage chemotaxis using blind-well chambers. The macrophages were obtained from the peritoneal cavity 4-5 days after intraperitoneal injection of squalene. Both macrophage chemotactic and chemokinetic activities were demonstrated using the S. agalactiae ECP. However, only chemotactic activity was shown for S. iniae ECP. High-pressure liquid chromatography fractionation revealed that semi-purified S. agalactiae and S. iniae ECPs had estimated molecular weights of 7.54 and 19.2kDa, respectively. The prominent chemotactic activities of ECP from S. agalactiae and S. iniae are likely to be involved in the proinflammatory responses of macrophages to S. agalactiae and S. iniae infections.  相似文献   
806.
Phylogeny and classification of Rosaceae   总被引:3,自引:0,他引:3  
Phylogenetic relationships among 88 genera of Rosaceae were investigated using nucleotide sequence data from six nuclear (18S, gbssi1, gbssi2, ITS, pgip, and ppo) and four chloroplast (matK, ndhF, rbcL, and trnL-trnF) regions, separately and in various combinations, with parsimony and likelihood-based Bayesian approaches. The results were used to examine evolution of non-molecular characters and to develop a new phylogenetically based infrafamilial classification. As in previous molecular phylogenetic analyses of the family, we found strong support for monophyly of groups corresponding closely to many previously recognized tribes and subfamilies, but no previous classification was entirely supported, and relationships among the strongly supported clades were weakly resolved and/or conflicted between some data sets. We recognize three subfamilies in Rosaceae: Rosoideae, including Filipendula, Rubus, Rosa, and three tribes; Dryadoideae, comprising the four actinorhizal genera; and Spiraeoideae, comprising Lyonothamnus and seven tribes. All genera previously assigned to Amygdaloideae and Maloideae are included in Spiraeoideae. Three supertribes, one in Rosoideae and two in Spiraeoideae, are recognized.  相似文献   
807.
Nucleic acids that contain multiple sequential guanines assemble into guanine quadruplexes (G-quadruplexes). Drugs that induce or stabilize G-quadruplexes are of interest because of their potential use as therapeutics. Previously, we reported on the interaction of the Cu(2+) derivative of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine (CuTMpyP4), with the parallel-stranded G-quadruplexes formed by d(T(4)G( n )T(4)) (n = 4 or 8) (Keating and Szalai in Biochemistry 43:15891-15900, 2004). Here we present further characterization of this system using a series of guanine-rich oligonucleotides: d(T(4)G( n )T(4)) (n = 5-10). Absorption titrations of CuTMpyP4 with all d(T(4)G( n )G(4)) quadruplexes produce approximately the same bathochromicity (8.3 +/- 2 nm) and hypochromicity (46.2-48.6%) of the porphyrin Soret band. Induced emission spectra of CuTMpyP4 with d(T(4)G( n )T(4))(4) quadruplexes indicate that the porphyrin is protected from solvent. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry revealed a maximum porphyrin to quadruplex stoichiometry of 2:1 for the shortest (n = 4) and longest (n = 10) quadruplexes. Electron paramagnetic resonance spectroscopy shows that bound CuTMpyP4 occupies magnetically noninteracting sites on the quadruplexes. Consistent with our previous model for d(T(4)G(4)T(4)), we propose that two CuTMpyP4 molecules are externally stacked at each end of the run of guanines in all d(T(4)G( n )T(4)) (n = 4-10) quadruplexes.  相似文献   
808.
Hyaline articular cartilage, the load-bearing tissue of the joint, has very limited repair and regeneration capacities. The lack of efficient treatment modalities for large chondral defects has motivated attempts to engineer cartilage constructs in vitro by combining cells, scaffold materials and environmental factors, including growth factors, signaling molecules, and physical influences. Despite promising experimental approaches, however, none of the current cartilage repair strategies has generated long lasting hyaline cartilage replacement tissue that meets the functional demands placed upon this tissue in vivo. The reasons for this are diverse and can ultimately result in matrix degradation, differentiation or integration insufficiencies, or loss of the transplanted cells and tissues. This article aims to systematically review the different causes that lead to these impairments, including the lack of appropriate differentiation factors, hypertrophy, senescence, apoptosis, necrosis, inflammation, and mechanical stress. The current conceptual basis of the major biological obstacles for persistent cell-based regeneration of articular cartilage is discussed, as well as future trends to overcome these limitations.  相似文献   
809.
Reviews in Fish Biology and Fisheries - Marine ecosystems and their associated biodiversity sustain life on Earth and hold intrinsic value. Critical marine ecosystem services include maintenance of...  相似文献   
810.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号