首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607486篇
  免费   68808篇
  国内免费   304篇
  2018年   5219篇
  2016年   7028篇
  2015年   9735篇
  2014年   11394篇
  2013年   16304篇
  2012年   18238篇
  2011年   18369篇
  2010年   12516篇
  2009年   11253篇
  2008年   16296篇
  2007年   17008篇
  2006年   15806篇
  2005年   15337篇
  2004年   15159篇
  2003年   14647篇
  2002年   14577篇
  2001年   29305篇
  2000年   29682篇
  1999年   23299篇
  1998年   7664篇
  1997年   7978篇
  1996年   7594篇
  1995年   7180篇
  1994年   7163篇
  1993年   6898篇
  1992年   19601篇
  1991年   18851篇
  1990年   18274篇
  1989年   17691篇
  1988年   16521篇
  1987年   15541篇
  1986年   14194篇
  1985年   14253篇
  1984年   11632篇
  1983年   10162篇
  1982年   7785篇
  1981年   6874篇
  1980年   6464篇
  1979年   11411篇
  1978年   8581篇
  1977年   7925篇
  1976年   7275篇
  1975年   8118篇
  1974年   8624篇
  1973年   8610篇
  1972年   7978篇
  1971年   7173篇
  1970年   6250篇
  1969年   5998篇
  1968年   5383篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
This paper describes the functional characterization of the xyloside transporter, XylP, of Lactobacillus pentosus with the aid of a spectroscopy-based assay system. In order to monitor the transport reaction, the natural xyloside isoprimeverose, a building block of hemicellulose, and the analogue methyl-isoprimeverose were chemically synthesized by a new and efficient procedure. The XylP protein was purified by metal affinity chromatography, following high level expression in Lactococcus lactis from the nisin-inducible promoter. The purified XylP protein was incorporated into liposomes, in which the glucose dehydrogenase from Acinetobacter calcoaceticus (sGDH) was entrapped. sGDH can oxidize aldose sugars in the presence of dichlorophenol-indophenol as electron acceptor. The coupled assay thus involves XylP-mediated isoprimeverose uptake followed by internal oxidation of the sugar by sGDH, which can be monitored from the reduction of 2,6-dichlorophenol-indophenol at 600 nm. The uptake of isoprimeverose was stimulated by the presence of the non-oxidizable methyl-isoprimeverose on the trans-side of the membrane, indicating that exchange transport is faster than unidirectional downhill uptake. Unlike other members of the galactoside-pentoside-hexuronide family, XylP does not transport monosaccharides (xylose) but requires a glycosidic linkage at the anomeric carbon position. Consistent with a proton motive force-driven mechanism, the uptake was stimulated by a membrane potential (inside negative relative to outside) and inhibited by a pH gradient (inside acidic relative to outside). The advantages of the here-described transport assay for studies of carbohydrate transport are discussed.  相似文献   
993.
994.
Monoclonal antibodies were used to demonstrate the expression of four distinct metacyclic (infective insect form) trypanosome antigens on blood forms of T. rhodesiense. Metacyclic antigens were consistently expressed on the blood forms on days 4 and 5 of the first parasitemia after metacyclic infection of C57BL/6 mice. In different mice examined, the percent of blood forms expressing metacyclic antigens ranged from 46 to 85%. Immunization with irradiated day-5 blood form trypanosomes was protective against metacyclic challenge, indicating that all antigen specificities relevant to protective immunization against metacyclic challenge are expressed on blood form trypanosomes. Blood forms, in contrast to metacyclic forms, can be isolated in quantities sufficient for purification of antigens and genetic cloning.  相似文献   
995.
K D Wittrup  J E Bailey 《Cytometry》1988,9(4):394-404
A novel assay of single-cell exogenous beta-galactosidase activity in Saccharomyces cerevisiae has been developed. Intracellular fluorescence due to the hydrolysis of resorufin-beta-D-galactopyranoside attains a steady state between production of resorufin and its subsequent leakage from the cell. The cells are permeabilized with Triton X-100, and the assay is performed at 0 degrees C. These conditions were chosen to minimize intercellular fluorescence communication. Free resorufin in the extracellular space is bound by bovine serum albumin to prevent its uptake by cells. Two regimes of fluorescence accumulation are observed, one limited by the rate of diffusion of substrate into the cell, and one limited by the rate of enzymatic cleavage of the substrate. A quantitative correlation between fluorescence and beta-galactosidase activity is obtained under optimized assay conditions.  相似文献   
996.
A method for the detection of the specific binding of 3-methylcholanthrene to rat liver cytosolic proteins is described. The separation of the protein-bound 3-methylcholanthrene from the free 3-methylcholanthrene was achieved using a batch DEAE-cellulose technique. Extraction of the DEAE-cellulose with 0.3 M KCl allowed the selective release and measurement of the amount of protein-bound 3-methylcholanthrene. The assay was optimized for the following parameters: time of incubation with DEAE-cellulose, time required for salt extraction, protein concentration, the concentration of KCl required to elute the specific binding proteins, the amount of DEAE-cellulose required to bind the specific binding proteins, and ligand specificity. The sedimentation properties of those 3-methylcholanthrene-binding proteins which were extracted with salt from DEAE-cellulose were examined on 5 to 20% sucrose gradients; the major binding species sedimented as a broad peak at 4.5 S.  相似文献   
997.
Q Ruan  K Ruan  C Balny  M Glaser  W W Mantulin 《Biochemistry》2001,40(48):14706-14714
Adenylate kinase (AKe) from E. coli is a small, single-chain, monomeric enzyme with no tryptophan and a single cysteine residue. We have constructed six single-Trp mutants of AKe to facilitate optical studies of these proteins and to specifically examine the interrelationship between their structure, function, dynamics, and folding reactions. In this study, the effects of hydrostatic pressure on the folding reactions of AKe were studied. The native structure of AKe was transformed to a non-native, yet pressure stable, conformation by hydrostatic pressure of about 300 MPa. This pressure lability of AKe is rather low for a monomeric protein and presumably may be attributed to substantial conformational flexibility and a correspondingly large volume change. The refolding of AKe after pressure-induced denaturation was reversible under ambient conditions. At low temperature (near 0 degrees C), the refolding process of pressure-exposed AKe mutants displayed a significant hysteresis. The observation of a slow refolding rate in the 193 region and a faster folding rate around the active site (86, 41, 73 regions) leads us to suggest that in the folding process, priority is afforded to functional regions. The slow structural return of the 193 region apparently does not hinder the more rapid return of enzymatic activity of AKe. Circular dichroism studies on the pressure-denatured Y193W mutant show that the secondary structure (calculated from far-UV spectra) returned at a rapid rate, but the tertiary structure alignment (calculated from near-UV spectra) around the 193 region occurred more slowly at rates comparable to those detected by fluorescence intensity. Denaturation of AKe mutants by guanidine hydrochloride and subsequent refolding experiments were also consistent with a much slower refolding process around the 193 region than near the active site. Fast refolding kinetic traces were observed in F86W, S41W, and A73W mutants using a fluorescence detection stopped-flow rapid mixing device, while only a slow kinetic trace was observed for Y193W. The results suggest that the differences in regional folding rates of AKe are not derived from the specific denaturation methods, but rather are inherent in the structural organization of the protein.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号