首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
11.
Galpha13 mediates the ability of the morphogen retinoic acid to promote primitive endoderm formation from mouse P19 embryonal carcinoma stem cells, a process that includes the obligate activation of Jun N-terminal kinase. Expression of the constitutively activated (Q226L) GTPase-deficient form of Galpha13 mimics retinoic acid and was used to investigate the signaling upstream of primitive endoderm formation. Jun N-terminal kinase 1 activity, MEK1,2, MKK4, and MEKK1 were constitutively activated in clones stably transfected to express Q226L Galpha13. Dominant negative forms of MEKK1 and MEKK4 were expressed stably in the clones harboring Q226L Galpha13. Expression of dominant negative versions of either MEKK1 or MEKK4 effectively blocks both the activation of Jun N-terminal kinase as well as the formation of primitive endoderm. Depletion of MEKK1, -2, or -4 by antisense oligodeoxynucleotides suppressed signaling from Q226L Galpha13 to JNK1 and primitive endoderm formation. We demonstrate that the signal linkage map from Galpha13 activation to primitive endoderm formation in these stem cells requires activation at three levels of the mitogen-activated protein kinase cascade: MEKK1, -2, or -4 for MAP kinase kinase kinase; MKK4 and/or MEK1 for MAP kinase kinase; and JNK1 for MAP kinase.  相似文献   
12.
13.
Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides. Here we examine whether aromatic residues are necessary for amyloid formation by islet amyloid polypeptide (IAPP). IAPP is responsible for the formation of islet amyloid in type II diabetes which is thought to play a role in the pathology of the disease. IAPP is 37 residues in length and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. Structural models of IAPP amyloid fibrils postulate that Tyr-37 is near one of the phenylalanine residues, and it is known that Tyr-37 interacts with one of the phenylalanines during fibrillization; however, it is not known if aromatic-aromatic or aromatic-hydrophobic interactions are absolutely required for amyloid formation. An F15L/F23L/Y37L triple mutant (IAPP-3XL) was prepared, and its ability to form amyloid was tested. CD, thioflavin binding assays, AFM, and TEM measurements all show that the triple leucine mutant readily forms amyloid fibrils. The substitutions do, however, decrease the rate of fibril formation and alter the tendency of fibrils to aggregate. Thus, while aromatic residues are not an absolute requirement for amyloid formation by IAPP, they do play a role in the fibril assembly process.  相似文献   
14.
Cyclin-dependent kinase 5 (cdk5) is a ubiquitous protein activated by specific activators, p35 and p39. Cdk5 regulates neuronal migration, differentiation, axonogenesis, synaptic transmission and apoptosis. However, its role in motor neuron development remains unexplored. Here, using gain and loss-of-function analyses in developing zebrafish embryos, we report that cdk5 plays a critical role in spinal and cranial motor neuron development. Cdk5 knockdown results in supernumerary spinal and cranial motor neurons. While a dominant negative, kinase-dead cdk5 promotes the generation of supernumerary motor neurons; over-expression of cdk5 suppresses motor neuron development. Thus, modulating cdk5 activity seems promising in inducing motor neuron development in vivo.  相似文献   
15.

Background

A live oral cholera vaccine VA 1.4 developed from a non-toxigenic Vibrio cholerae O1 El Tor strain using ctxB gene insertion was further developed into a clinical product following cGMP and was evaluated in a double-blind randomized placebo controlled parallel group two arm trial with allocation ratio of 1∶1 for safety and immunogenicity in men and women aged 18–60 years from Kolkata, India.

Method

A lyophilized dose of 1.9×109 CFU (n = 44) or a placebo (n = 43) reconstituted with a diluent was administered within 5 minutes of drinking 100 ml of a buffer solution made of sodium bicarbonate and ascorbic acid and a second dose on day 14.

Result

The vaccine did not elicit any diarrhea related adverse events. Other adverse events were rare, mild and similar in two groups. One subject in the vaccine group excreted the vaccine strain on the second day after first dose. The proportion of participants who seroconverted (i.e. had 4-folds or higher rise in reciprocal titre) in the vaccine group were 65.9% (95% CI: 50.1%–79.5%) at both 7 days (i.e. after 1st dose) and 21 days (i.e. after 2nd dose). None of the placebo recipients seroconverted. Anti-cholera toxin antibody was detected in very few recipients of the vaccine.

Conclusion

This study demonstrates that VA 1.4 at a single dose of 1.9×109 is safe and immunogenic in adults from a cholera endemic region. No additional benefit after two doses was seen.

Trial Registration

Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2012/04/002582  相似文献   
16.
BackgroundA bivalent killed whole cell oral cholera vaccine has been found to be safe and efficacious for five years in the cholera endemic setting of Kolkata, India, when given in a two dose schedule, two weeks apart. A randomized controlled trial revealed that the immune response was not significantly increased following the second dose compared to that after the first dose. We aimed to evaluate the impact of an extended four week dosing schedule on vibriocidal response.Conclusions/SignificanceComparable immune responses and safety profiles between the two dosing schedules support the option for increased flexibility of current OCV dosing. Further operational research using a longer dosing regimen will provide answers to improve implementation and delivery of cholera vaccination in endemic and epidemic outbreak scenarios.  相似文献   
17.
A procedure was developed for studying vitellogenin (VTG) incorporation by vitellogenic oocytes of Fundulus heteroclitus in vitro. Since homologous VTG can be obtained from this animal only with great difficulty, the use of [32P]VTG from Xenopus laevis was explored as an alternative. Vitellogenic as well as maturational-stage oocytes were found to sequester X. laevis [32P]VTG from the medium, and incorporation was found to be linear with time for at least up to 12 hr. Once incorporated into the oocyte, [32P]VTG did not appear to undergo turnover. The effect of different [32P]VTG concentrations on incorporation indicated that the uptake mechanism was saturable. Unlabeled F. heteroclitus VTG and X. laevis VTG were also found to compete effectively with X. laevis [32P]VTG, whereas bovine serum albumin did not. These results represent the first documentation of a successful culture system for receptor-mediated VTG incorporation by teleost oocytes.  相似文献   
18.
The 14-3-3 proteins are among the most abundant proteins expressed in the brain, comprising about 1% of the total amount of soluble brain proteins. Through phosphoserine- and phosphothreonine-binding motifs, 14-3-3 proteins regulate many signaling proteins and cellular processes including cell death. In the present study, we utilized a well-known kainic acid (KA)-induced excitotoxicity rat model and examined the expression of 14-3-3 and its isoforms in the frontal cortex of KA-treated and control animals. Among the different 14-3-3 isoforms, abundant levels of eta and tau were detected in the frontal cortex, followed by sigma, epsilon, and gamma, while the expression levels of alpha/beta and zeta/delta isoforms were low. Compared to the control animals, KA treatment induced a significant downregulation of the overall 14-3-3 protein level as well as the levels of the abundant isoforms eta, tau, epsilon, and gamma. We also investigated two 14-3-3-interacting proteins that are involved in the cell death process: Bcl-2-associated X (BAX) and extracellular signal-regulated kinase (ERK). Both BAX and phosphorylated ERK showed increased levels following KA treatment. Together, these findings demonstrate an abundance of several 14-3-3 isoforms in the frontal cortex and that KA treatment can cause a downregulation of 14-3-3 expression and an upregulation of 14-3-3-interacting proteins BAX and phospho-ERK. Thus, downregulation of 14-3-3 proteins could be one of the early molecular events associated with excitotoxicity. This could lead to subsequent upregulation of 14-3-3-binding proteins such as BAX and phospho-ERK that contribute to further downstream apoptosis processes, eventually leading to cell death. Maintaining sufficient levels of 14-3-3 expression and function may become a target of therapeutic intervention for excitotoxicity-induced neurodegeneration.  相似文献   
19.
20.
In vitro ADP-ribosylation of chromosomal protein and its modulation by spermine, 3-aminobenzamide (3-AB) and benzamide were studied by incubating the nuclei of cerebral hemisphere of 3-, 14- and 30-day old rats with 32P-NAD+. Histones get ADP-ribosylated more than the non-histone chromosomal (NHC) protein. H1 is the major target for ADP-ribosylation. Among the nucleosomal histones, H2B is ADP-ribosylated most. The other core histones also get ADP-ribosylated to a lesser extent. ADP-ribosylation of both histones and NHC proteins decreases during development. Spermine stimulates, whereas 3-AB and benzamide inhibit, 32P-ADP-ribose incorporation into histones and NHC proteins. These effects decrease with development. Mild digestion of chromatin by micrococcal nuclease (MNase), EcoRI, and AluI prior to ADP-ribosylation stimulates incorporation of 32P-ADP-ribose. The degree of stimulation decreases as development proceeds. Such alterations indicate progressive condensation of chromatin with development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号