首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   6篇
  182篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   9篇
  2013年   10篇
  2012年   22篇
  2011年   12篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   12篇
  2004年   4篇
  2003年   8篇
  2002年   12篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1994年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
31.
Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I - A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between "WY96" and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis.  相似文献   
32.
Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques.  相似文献   
33.
The expressed sequence tags (ESTs) of common bean were BLAST aligned with barred medic genome sequence and developed 1196 conserved intron spanning primers (CISPs) to facilitate genetic studies in legumes. Randomly selected 288 CISPs, representing loci on barrel medic genome, were tested on 10 selected members of legume family. On the source taxa, the highest single copy amplification success rates of 61.8% (barrel medic) and 56.2% (common bean) was obtained. The success rate of markers was 54.5% in cowpea followed by 53.5% in pigeonpea and chickpea, signifying cross taxon amplification and their potential use in comparative genomics. However, relatively low percentages of primer set amplified (40–43%) in soybean, urdbean and peanut. Further, these primers were tested on different varieties of chickpea, pigeonpea and cowpea. The PCR products were sequenced and aligned which resulted in detection of 26 SNPs and eight INDeLs in cowpea, seven SNPs and two INDeLs in chickpea and 27 SNPs and 14 INDeLs in pigeonpea. These SNPs were successfully converted in to size variation for gel-based genotyping. The CISP markers developed in this study are expected to aid in map saturation of legumes and in marker-assisted selection for accelerated crop improvement.  相似文献   
34.
Chemical ecology is an ever‐expanding field with a growing interest in population‐ and community‐level studies. Many such studies are hindered due to lack of an efficient and accelerated protocol for large‐scale sampling and analysis of chemical compounds. Here, we present an optimized protocol for such large‐scale study of volatiles. A large‐scale in situ study to understand role of semiochemicals in variation in mating success of lekking blackbuck was conducted. Suitable methods for sampling and statistical analysis were identified by testing and comparing the efficiencies of available techniques to reduce analysis time while retaining sensitivity and comprehensiveness. Solid‐phase extraction using polydimethylsiloxane, analysis using a semiautomated detection of retention time and base peak, and statistical analysis using random forest algorithm were identified as the most efficient methods for large‐scale in situ sampling and analysis of volatiles. The protocol for large‐scale volatile analysis can facilitate evolutionary and metaecological studies of volatiles in situ from all types of biological samples. The protocol has potential for wider application with the analysis and interpretation methods being suitable for all kinds of semiochemicals, including nonvolatile chemicals.  相似文献   
35.
In the search of efficient anticancer agents, here, new 5-(4-alkylbenzyledene)thiazolidine-2,4-dione derivatives (5a–g) have been successfully synthesized and characterized and are evaluated for anticancer and antimicrobial activities using DNA cleavage studies. In vitro studies on anticancer activity of compound 5d (NSC: 768619/1) was done against the full panel of 60 human tumor cell lines. The five-level dose activity results revealed that, the compound 5d was active against all the cell lines, it has shown potential activity against leukemia SR (GI50: 2.04 μM), non-small cell lung cancer NCI-H522 (GI50: 1.36 μM), colon cancer COLO 205 (GI50: 1.64 μM), CNS cancer SF-539 (GI50: 1.87 μM), melanoma SK-MEL-2 (GI50: 1.64 μM), ovarian cancer OVCAR-3 (GI50: 1.87 μM), renal cancer RXF 393 (GI50: 1.15 μM), prostate cancer PC-3 (GI50: 1.90 μM), and breast cancer MDA-MB-468(GI50: 1.11 μM). DNA cleavage studies revealed that at 50 μg/mL concentration, partial DNA digestion was observed and when the concentration is increasing to threefold (150 μg/mL), complete linear DNA digestion and partial supercoiled DNA digestion was observed. Further antimicrobial studies indicate that all the synthesized compounds except compound 5a possess prominent activity against all the screened microbial species. This study throws a ray of light in the field of anticancer drugs.  相似文献   
36.
Stop codon readthrough (SCR) is the process of continuation of translation beyond the stop codon, generating protein isoforms with C-terminal extensions. SCR has been observed in viruses, fungi, and multicellular organisms, including mammals. However, SCR is largely unexplored in plants. In this study, we have analyzed ribosome profiling datasets to identify mRNAs that exhibit SCR in Arabidopsis thaliana. Analyses of the ribosome density, ribosome coverage, and three-nucleotide periodicity of the ribosome profiling reads in the mRNA region downstream of the stop codon provided strong evidence for SCR in mRNAs of 144 genes. We show that SCR generated putative evolutionarily conserved nuclear localization signals, transmembrane helices, and intrinsically disordered regions in the C-terminal extensions of several of these proteins. Furthermore, gene ontology functional enrichment analysis revealed that these 144 genes belong to three major functional groups—translation, photosynthesis, and abiotic stress tolerance. Using a luminescence-based readthrough assay, we experimentally demonstrated SCR in representative mRNAs belonging to each of these functional classes. Finally, using microscopy, we show that the SCR product of one gene that contains a nuclear localization signal at the C-terminal extension, CURT1B, localizes to the nucleus as predicted. Based on these observations, we propose that SCR plays an important role in plant physiology by regulating protein localization and function.  相似文献   
37.
Several natural language processing tools, both commercial and freely available, are used to extract protein interactions from publications. Methods used by these tools include pattern matching to dynamic programming with individual recall and precision rates. A methodical survey of these tools, keeping in mind the minimum interaction information a researcher would need, in comparison to manual analysis has not been carried out. We compared data generated using some of the selected NLP tools with manually curated protein interaction data (PathArt and IMaps) to comparatively determine the recall and precision rate. The rates were found to be lower than the published scores when a normalized definition for interaction is considered. Each data point captured wrongly or not picked up by the tool was analyzed. Our evaluation brings forth critical failures of NLP tools and provides pointers for the development of an ideal NLP tool.  相似文献   
38.
Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.  相似文献   
39.
The mechanism of membrane interaction by beta-sheet peptides is important to understand fundamental principles of folding of beta-barrel proteins and various beta-amyloid proteins. Here, we examined the conformational characteristics of a porin-like channel forming (xSxG)(6) peptide in solution and membrane-mimicking environments (CD and ATR-IR) to understand the structural changes of the peptide during membrane association and channel formation. A comparison of the peptide conformations in different microenvironments showed that beta-sheet formation is enhanced in membrane-mimicking liposomes and SDS-micelles. The lipid-induced beta-sheet formation was confirmed by the formation of a characteristic beta-sheet structure on mixing a methanolic solution of the peptide (partially folded) with preformed liposomes. The amphipathicity of the peptide; increased hydrogen bonding, hydrophilicity, and reduction in dimensionality of the membrane surface; membrane-peptide interaction-forces; and presence of flexible glycines might facilitate beta-sheet formation in membranes. Though the CD spectra of both the peptide-bound and peptide-incorporated lipids are reminiscent of a beta-sheet structure, a significant variation in the peak positions of the two beta-sheet structures was noticed. The channel characteristics of (xSxG)(6) in the presence of low ionic strength solutions of NEt(3)BzCl and glucosammonium chloride are comparable to those reported under high ionic strength solutions. Altogether the data suggest that the channel formation by (xSxG)(6) proceeds via beta-sheet aggregate formation at the membrane surface, beta-sheet insertion, and rearrangement into a beta-barrel-like structure. The beta-barrel-like channel formation most likely arises from a sequence similarity to beta-barrel porins whereas the lipid-induced beta-sheet formation is governed by the above-mentioned factors.  相似文献   
40.
The napin from Brassica juncea, oriental mustard, is highly thermostable, proteolysis resistant and allergenic in nature. It consists of two subunits - one small (29 amino acid residues) and one large (86 amino acids residues) - held together by disulfide bonds. The thermal unfolding of napin has been followed by differential scanning calorimetry (DSC) and circular dichroism (CD) measurements. The thermal unfolding is characterized by a three state transition with T(M1) and T(M2) at 323.5 K and 335.8 K, respectively; DeltaC(P1) and DeltaC(P2) are 2.05 kcal mol(-1) K(-1) and 1.40 kcal mol(-1) K(-1), respectively. In the temperature range 310-318 K, the molecule undergoes dimerisation. Isothermal equilibrium unfolding by guanidinium hydrochloride also follows a three state transition, N <_-_-> I <_-_-> U with DeltaG(1H2O) and DeltaG(2H2O) values of 5.2 kcal mol(-1) and 5.1 kcal mol(-1) at 300 K, respectively. Excess heat capacity values obtained, are similar to those obtained from DSC measurements. There is an increase in hydrodynamic radius from 20 A to 35.0 A due to unfolding by guanidinium hydrochloride. In silico alignment of sequences of napin has revealed that the internal repeats (40%) spanning residues 31 to 60 and 73 to 109 are conserved in all Brassica species. The internal repeats may contribute to the greater stability of napin. A thorough understanding of the structure and stability of these proteins is essential before they can be exploited for genetic improvements for nutrition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号