首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   18篇
  456篇
  2023年   5篇
  2022年   8篇
  2021年   13篇
  2020年   4篇
  2019年   10篇
  2018年   13篇
  2017年   7篇
  2016年   9篇
  2015年   18篇
  2014年   24篇
  2013年   28篇
  2012年   41篇
  2011年   26篇
  2010年   21篇
  2009年   17篇
  2008年   19篇
  2007年   16篇
  2006年   19篇
  2005年   23篇
  2004年   13篇
  2003年   13篇
  2002年   18篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1994年   2篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
  1937年   1篇
排序方式: 共有456条查询结果,搜索用时 11 毫秒
31.
32.
33.
(1) Voltage-gated Ca2+ (CaV) channels are multi-subunit membrane complexes that allow depolarization-induced Ca2+ influx into cells. The skeletal muscle L-type CaV channels consist of an ion-conducting CaV1.1 subunit and auxiliary α2δ−1, β1 and γ1 subunits. This complex serves both as a CaV channel and as a voltage sensor for excitation–contraction coupling. (2) Though much is known about the mechanisms by which the α2δ−1 and β1 subunits regulate CaV channel function, there is far less information on the γ1 subunit. Previously, we characterized the interaction of γ1 with the other components of the skeletal CaV channel complex, and showed that heterologous expression of this auxiliary subunit decreases Ca2+ current density in myotubes from γ1 null mice. (3) In the current report, using Western blotting we show that the expression of the CaV1.1 protein is significantly lower when it is heterologously co-expressed with γ1. Consistent with this, patch-clamp recordings showed that transient transfection of γ1 drastically inhibited macroscopic currents through recombinant N-type (CaV2.2/α2δ−1/β3) channels expressed in HEK-293 cells. (4) These findings provide evidence that co-expression of the auxiliary γ1 subunit results in a decreased expression of the ion-conducting subunit, which may help to explain the reduction in Ca2+ current density following γ1 transfection.  相似文献   
34.
Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.  相似文献   
35.
The repair of DNA damage requires the ordered recruitment of many different proteins that are responsible for signaling and subsequent repair. A powerful and widely used tool for studying the orchestrated accumulation of these proteins at damage sites is laser microirradiation in live cells, followed by monitoring the accumulation of the fluorescently labeled protein in question. Despite the widespread use of this approach, there exists no rigorous method for characterizing the recruitment process quantitatively. Here, we introduce a diffusion model that explicitly accounts for the unique sizes and shapes of individual nuclei and uses two variables: Deff, the effective coefficient of diffusion, and F, the fraction of mobile protein that accumulates at sites of DNA damage. Our model quantitatively describes the accumulation of three test proteins, poly-ADP-ribose polymerases 1 and 2 (PARP1/2) and histone PARylation factor 1. Deff for PARP1, as derived by our approach, is 6× greater than for PARP2 and in agreement with previous literature reports using fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Our data indicate that histone PARylation factor 1 arrives at sites of DNA damage independently of either PARP. Importantly, our model, which can be applied to existing data, allows for the direct comparison of the coefficient of diffusion for any DNA repair protein between different cell types, obtained in different laboratories and by different methods, and also allows for the interrogation of cell-to-cell variability.  相似文献   
36.
The biotechnology industry today employs recombinant bacteria, mammalian cells, and transgenic animals for the production of high-value therapeutic proteins. This article reviews the techniques employed in this industry for the recovery of these products. The methods reviewed extend from the centrifugation and membrane filtration for the initial clarification of crude culture media to the final purification of the products by a variety of membrane-based and chromatographic methods. The subject of process validation including validation of the removal of bacterial and viral contaminants from the final products is also discussed with special reference to the latest regulatory guidelines.  相似文献   
37.
Curcumin modulates free radical quenching in myocardial ischaemia in rats   总被引:1,自引:0,他引:1  
This study was designed to investigate the protective effect of curcumin (CUR) against isoprenaline induced myocardial ischaemia in rat myocardium. The effect of single oral dose of curcumin (15 mg kg(-1)), administered 30 min before and/or after the onset of ischaemia, was investigated by assessing oxidative stress related biochemical parameters in rat myocardium. Curcumin pre and post-treatment (PPT) was shown to decrease the levels of xanthine oxidase, superoxide anion, lipid peroxides (LPs) and myeloperoxidase while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities were significantly increased after curcumin PPT. Histopathological and transmission electron microscopical studies also confirmed the severe myocardial damage occurring as a consequence of isoprenaline induced ischaemia and they also showed the significant improvement effected by curcumin PPT. These findings provided evidence that curcumin was found to protect rat myocardium against ischaemic insult and the protective effect could be attributed to its antioxidant properties as well as its inhibitory effects on xanthine dehydrogenase/xanthine oxidase (XD/XO) conversion and resultant superoxide anion production.  相似文献   
38.
39.
Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.  相似文献   
40.
We characterized the neuronal two-domain (95kD-alpha(1)2.1) form of the alpha(1)2.1 subunit of the voltage-gated calcium channels using genetic and molecular analysis. The 95kD-alpha(1)2.1 is absent in neuronal preparations from CACNA1A null mouse demonstrating that alpha(1)2.1 and 95kD-alpha(1)2.1 arise from the same gene. A recombinant two-domain form (alpha(1AI-II)) of alpha(1)2.1 associates with the beta subunit and is trafficked to the plasma membrane. Translocation of the alpha(1AI-II) to the plasma membrane requires association with the beta subunit, since a mutation in the alpha(1AI-II) that inhibits beta subunit association reduces membrane trafficking. Though the alpha(1AI-II) protein does not conduct any voltage-gated currents, we have previously shown that it generates a high density of non-linear charge movements [Ahern et al., Proc. Natl. Acad. Sci. USA 98 (2001) 6935-6940]. In this study, we demonstrate that co-expression of the alpha(1AI-II) significantly reduces the current amplitude of alpha(1)2.1/beta(1a)/alpha(2)delta channels, via competition for the beta subunit. Taken together, our results demonstrate a dual functional role for the alpha(1AI-II) protein, both as a voltage sensor and modulator of P/Q-type currents in recombinant systems. These studies suggest an in vivo role for the 95kD-alpha(1)2.1 in altering synaptic activity via protein-protein interactions and/or regulation of P/Q-type currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号