首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2999篇
  免费   321篇
  国内免费   1篇
  2023年   17篇
  2022年   19篇
  2021年   38篇
  2020年   32篇
  2019年   40篇
  2018年   43篇
  2017年   44篇
  2016年   83篇
  2015年   96篇
  2014年   103篇
  2013年   135篇
  2012年   180篇
  2011年   174篇
  2010年   112篇
  2009年   106篇
  2008年   117篇
  2007年   127篇
  2006年   140篇
  2005年   148篇
  2004年   116篇
  2003年   135篇
  2002年   127篇
  2001年   69篇
  2000年   79篇
  1999年   68篇
  1998年   39篇
  1997年   45篇
  1996年   43篇
  1995年   53篇
  1994年   42篇
  1993年   34篇
  1992年   38篇
  1991年   45篇
  1990年   49篇
  1989年   48篇
  1988年   40篇
  1987年   38篇
  1986年   34篇
  1985年   36篇
  1984年   37篇
  1983年   31篇
  1982年   27篇
  1981年   20篇
  1979年   23篇
  1978年   25篇
  1975年   24篇
  1974年   19篇
  1973年   22篇
  1971年   40篇
  1970年   16篇
排序方式: 共有3321条查询结果,搜索用时 29 毫秒
411.
Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.  相似文献   
412.
Mutations in the gene of human RNase T2 are associated with white matter disease of the human brain. Although brain abnormalities (bilateral temporal lobe cysts and multifocal white matter lesions) and clinical symptoms (psychomotor impairments, spasticity and epilepsy) are well characterized, the pathomechanism of RNase T2 deficiency remains unclear. RNase T2 is the only member of the Rh/T2/S family of acidic hydrolases in humans. In recent years, new functions such as tumor suppressing properties of RNase T2 have been reported that are independent of its catalytic activity. We determined the X-ray structure of human RNase T2 at 1.6 Å resolution. The α+β core fold shows high similarity to those of known T2 RNase structures from plants, while, in contrast, the external loop regions show distinct structural differences. The catalytic features of RNase T2 in presence of bivalent cations were analyzed and the structural consequences of known clinical mutations were investigated. Our data provide further insight into the function of human RNase T2 and may prove useful in understanding its mode of action independent of its enzymatic activity.  相似文献   
413.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum.  相似文献   
414.
One of the most abundantly IFN-γ-induced protein families in different cell types is the 65-kDa guanylate-binding protein family that is recruited to the parasitophorous vacuole of the intracellular parasite Toxoplasma gondii. Here, we elucidate the relationship between biochemistry and cellular host defense functions of mGBP2 in response to Toxoplasma gondii. The wild type protein exhibits low affinities to guanine nucleotides, self-assembles upon GTP binding, forming tetramers in the activated state, and stimulates the GTPase activity in a cooperative manner. The products of the two consecutive hydrolysis reactions are both GDP and GMP. The biochemical characterization of point mutants in the GTP-binding motifs of mGBP2 revealed amino acid residues that decrease the GTPase activity by orders of magnitude and strongly impair nucleotide binding and multimerization ability. Live cell imaging employing multiparameter fluorescence image spectroscopy (MFIS) using a Homo-FRET assay shows that the inducible multimerization of mGBP2 is dependent on a functional GTPase domain. The consistent results indicate that GTP binding, self-assembly, and stimulated hydrolysis activity are required for physiological localization of the protein in infected and uninfected cells. Ultimately, we show that the GTPase domain regulates efficient recruitment to T. gondii in response to IFN-γ.  相似文献   
415.
Low copper and ceruloplasmin in serum are the diagnostic hallmarks for Menkes disease, Wilson disease, and aceruloplasminemia. We report on five patients from four unrelated families with these biochemical findings who presented with a lethal autosomal-recessive syndrome of congenital cataracts, hearing loss, and severe developmental delay. Cerebral MRI showed pronounced cerebellar hypoplasia and hypomyelination. Homozygosity mapping was performed and displayed a region of commonality among three families at chromosome 3q25. Deep sequencing and conventional sequencing disclosed homozygous or compound heterozygous mutations for all affected subjects in SLC33A1 encoding a highly conserved acetylCoA transporter (AT-1) required for acetylation of multiple gangliosides and glycoproteins. The mutations were found to cause reduced or absent AT-1 expression and abnormal intracellular localization of the protein. We also showed that AT-1 knockdown in HepG2 cells leads to reduced ceruloplasmin secretion, indicating that the low copper in serum is due to reduced ceruloplasmin levels and is not a sign of copper deficiency. The severity of the phenotype implies an essential role of AT-1 in proper posttranslational modification of numerous proteins, without which normal lens and brain development is interrupted. Furthermore, AT-1 defects are a new and important differential diagnosis in patients with low copper and ceruloplasmin in serum.  相似文献   
416.
417.
When low dispersal ability of an organism meets geographical barriers, the evolution of inter- and intraspecific differentiation is often facilitated. In the Atlas massif of North Africa, the genus Buthus splits into several species and diverges into numerous genetic lineages, often following the orographic structures of mountain systems. Such high mountain ranges often act as barriers for species with reduced mobility even on small spatial scales. To study the effect of orographic structures on organisms with low dispersal ability, we collected 61 individuals of the scorpion species Buthus elmoutaouakili at 18 locations around the southwestern foothills of the High Atlas and Antiatlas and in the Sousse valley (western Morocco). We analyzed intraspecific differentiation patterns within this geographically restricted area of about 100 × 50 km using 452 bp of the cytochrome oxidase I mitochondrial gene. We detected 5 distinct genetic lineages. In a second analysis, we added 61 previously published sequences from Buthus species from Europe and North Africa. Using a molecular clock approach, we detected old splits (4-5 Ma) separating the samples from 1) the western High Atlas and north of these mountains, 2) the Sousse valley and adjoining mountain areas, and 3) the southwestern Antiatlas. Further differentiation happened in the first 2 geographical groups about 3 Ma. Thus, the divergence time estimates based on a Bayesian approach support the onset of differentiation into these main clades along the Pliocene (5-2.3 Ma) when climatic oscillations started and a constant global cooling preceded the glacial-interglacial cycles of the Pleistocene. Further genetic splits into parapatric groups are detectable for the Sousse valley main group in the early Pleistocene. The climatic oscillations of the Pliocene and early Pleistocene might have caused repeated range shifts, expansions, and retractions leading to repeated vicariance, hereby producing the hierarchical structure of genetic differentiation in B. elmoutaouakili. A taxonomic revision, including morphological and molecular data, is needed to assess the status of each of these Buthus scorpion lineages.  相似文献   
418.
419.
Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acid-resistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness.  相似文献   
420.
The production of the blue pigment indigoidine has been achieved in the entomopathogenic bacterium Photorhabdus luminescens by a promoter exchange and in Escherichia coli following heterologous expression of the biosynthesis gene indC. Moreover, genes involved in the regulation of this previously “silent” biosynthesis gene cluster have been identified in P. luminescens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号