首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2990篇
  免费   321篇
  国内免费   1篇
  2022年   15篇
  2021年   38篇
  2020年   32篇
  2019年   40篇
  2018年   43篇
  2017年   44篇
  2016年   83篇
  2015年   96篇
  2014年   103篇
  2013年   135篇
  2012年   180篇
  2011年   174篇
  2010年   112篇
  2009年   106篇
  2008年   117篇
  2007年   127篇
  2006年   140篇
  2005年   148篇
  2004年   116篇
  2003年   135篇
  2002年   127篇
  2001年   69篇
  2000年   79篇
  1999年   68篇
  1998年   39篇
  1997年   45篇
  1996年   43篇
  1995年   53篇
  1994年   42篇
  1993年   34篇
  1992年   38篇
  1991年   45篇
  1990年   49篇
  1989年   48篇
  1988年   40篇
  1987年   38篇
  1986年   34篇
  1985年   36篇
  1984年   37篇
  1983年   31篇
  1982年   27篇
  1981年   20篇
  1980年   14篇
  1979年   23篇
  1978年   25篇
  1975年   24篇
  1974年   19篇
  1973年   22篇
  1971年   40篇
  1970年   16篇
排序方式: 共有3312条查询结果,搜索用时 15 毫秒
401.
The intricate system of serum complement proteins provides resistance to infection. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial binding C3 fragments recognized by leukocytes. The spleen and C3 provide resistance against blood-borne S. pneumoniae infection. To better understand the mechanisms involved, we studied SIGN-R1, a lectin that captures microbial polysaccharides in spleen. Surprisingly, conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-R1(+) spleen macrophages, and formation of C3 ligands. We found that SIGN-R1 directly bound the complement C1 subcomponent, C1q, and assembled a C3 convertase, but without the traditional requirement for either antibody or factor B. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway.  相似文献   
402.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg(-1) protein for Kre1/EstA/Cwp2p and 72 mU mg(-1) protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg(-1) protein for Kre1/EstA/Cwp2p and 1.27 U mg(-1) protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   
403.
The brewer's yeast Saccharomyces cerevisiae has emerged as a versatile and robust model system for laboratory use to study toxic effects of various substances. In this study, toxicant-induced stresses of pure compounds were investigated in Saccharomyces cerevisiae utilizing a destabilized version of the green fluorescent protein optimized for expression in yeast (yEGFP3) under control of the promoter of the housekeeping plasma membrane ATPase gene PMA1. The responses of the biomarker upon increasing test compound concentrations were monitored by determining the decrease in fluorescence. The reporter assay deployed a simple and robust protocol for the rapid detection of toxic effects within a 96-well microplate format. Fluorescence emissions were normalized to cell growth determined by absorption and were correlated to internal reference standards. The results were expressed as effective concentrations (EC20). Dose-response experiments were conducted in which yeast cells were exposed in minimal medium and in the presence of 20% fetal calf serum to sublethal concentrations of an array of heavy metals, salt, and a number of stress-inducing compounds (Diclofenac, Lindane, methyl-N-nitro-N-nitrosoguanidine [MNNG], hydroxyurea, and caffeine). Long-term exposure (7 h) played a considerable role in the adaptive response to intoxication compared to early responses at 4 h exposure. The data obtained after 4 h of exposure and expressed as EC20 were compared to 50% inhibitory concentration values derived from cell line and ecotoxicological tests. This study demonstrates the versatility of the novel biomarker to complement existing test batteries to assess contaminant exposure and effects.  相似文献   
404.
Free-standing lipid bilayer membranes can be formed on small apertures (60 nm diameter) on highly ordered porous alumina substrates. The formation process of the membranes on a 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol submonolayer was followed by impedance spectroscopy. After lipid bilayers had thinned, the reconstitution and ionic conducting properties of the outer membrane protein OmpF of E. coli were monitored using single-channel recordings. The characteristic conductance states of the three monomers, fast kinetics, and subconductance states were observed. Blockade of the ion flow as a result of interaction of the antibiotic ampicillin with the protein was verified, indicating the full functionality of the protein channel in nanometer-scale bilayer membranes.  相似文献   
405.
Hereditary hyperekplexia is a neuromotor disorder characterized by exaggerated startle reflexes and muscle stiffness in the neonate. The disease has been associated with mutations in the glycine receptor subunit genes GLRA1 and GLRB. Here, we describe mutations within the neuronal glycine transporter 2 gene (GLYT2, or SLC6A5, ) of hyperekplexia patients, whose symptoms cannot be attributed to glycine receptor mutations. One of the GLYT2 mutations identified causes truncation of the transporter protein and a complete loss of transport function. Our results are consistent with GLYT2 being a disease gene in human hyperekplexia.  相似文献   
406.
This article discusses the development of homogeneous, miniaturized assays for the identification of novel kinase inhibitors from very large compound collections. In particular, the suitability of time-resolved fluorescence resonance energy transfer (TR-RET) based on phospho-specific antibodies, an antibody-independent fluorescence polarization (FP) approach using metal-coated beads (IMAP technology), and the determination of adenosine triphosphate consumption through chemiluminescence is evaluated. These readouts are compared with regard to assay sensitivity, compound interference, reagent consumption, and performance in a 1536-well format, and practical considerations for their application in primary screening or in the identification of kinase substrates are discussed. All of the tested technologies were found to be suitable for miniaturized high-throughput screening (HTS) in principle, but each of them has distinct limitations and advantages. Therefore, the target-specific selection of the most appropriate readout technology is recommended to ensure maximal relevance of HTS campaigns.  相似文献   
407.
Expression of the genetic information encoded in our genomes is usually regulated by proteins interacting with the DNA. In some cases, however, noncoding RNAs transcribed from DNA control elements cooperate with histone-modifying enzymes to regulate gene expression, as has recently been shown for noncoding RNA originating from Polycomb- and Trithorax-group response elements.  相似文献   
408.
By physically modifying the abiotic environment, ecosystem engineers can have dramatic effects on the distribution and abundance of species in a community. However, ecosystem engineering can also change the selective environment and evolutionary dynamics of affected species, although this remains relatively understudied. Here, we examine the potential for an ecosystem engineer – oak trees – to affect the evolutionary dynamics of the herbaceous, understory annual, Impatiens capensis , through leaf litter deposition. Using a quantitative genetic experimental approach, we found that: (i) the presence of leaf litter significantly affected a suite of germination, growth and phenological traits in I. capensis ; (ii) I. capensis does not exhibit performance trade-offs across litter and bare soil environments in the form of negative across-environment genetic correlations; (iii) the presence or absence of leaf litter significantly alters the pattern of natural selection germination timing and hypocotyl length; and (iv) the frequency of leaf litter environments can dramatically change which combinations of hypocotyl length lead to highest mean fitness across both bare soil and leaf litter environments. More generally, our results demonstrate the potential for ecosystem engineers to alter both the ecological and the evolutionary dynamics of the species they affect.  相似文献   
409.
Volvox carteri is a spherical alga with a complete division of labor between around 2000 biflagellate somatic cells and 16 asexual reproductive cells (gonidia). It provides an attractive system for studying how a molecular genetic program for cell-autonomous differentiation is encoded within the genome. Three types of genes have been identified as key players in germ-soma differentiation: a set of gls genes that act in the embryo to shift cell-division planes, resulting in asymmetric divisions that set apart the large-small sister-cell pairs; a set of lag genes that act in the large gonidial initials to prevent somatic differentiation; and the regA gene, which acts in the small somatic initials to prevent reproductive development. Somatic-cell-specific expression of regA is controlled by intronic enhancer and silencer elements.  相似文献   
410.
Two tris-benzimidazole derivatives have been designed and synthesized based on the known structures of the bis-benzimidazole stain Hoechst 33258 complexed to short oligonucleotide duplexes derived from single crystal X-ray studies and from NMR. In both derivatives the phenol group has been replaced by a methoxy-phenyl substituent. Whereas one tris-benzimidazole carries a N-methyl-piperazine at the 6-position, the other one has this group replaced by a 2-amino-pyrrolidine ring. This latter substituent results in stronger DNA binding. The optimized synthesis of the drugs is described. The two tris-benzimidazoles exhibit high AT-base pair (bp) selectivity evident in footprinting experiments which show that five to six base pairs are protected by the tris-benzimidazoles as compared to four to five protected by the bis-benzimidazoles. The tris-benzimidazoles bind well to sequences like 5'-TAAAC, 5'-TTTAC and 5'-TTTAT, but it is also evident that they can bind weakly to sequences such as 5'-TATGTT-3' where the continuity of an AT stretch is interrupted by a single G*C base pair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号