首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1999篇
  免费   180篇
  国内免费   2篇
  2181篇
  2022年   12篇
  2021年   21篇
  2020年   10篇
  2019年   16篇
  2018年   21篇
  2017年   19篇
  2016年   42篇
  2015年   49篇
  2014年   53篇
  2013年   72篇
  2012年   123篇
  2011年   114篇
  2010年   68篇
  2009年   67篇
  2008年   81篇
  2007年   115篇
  2006年   88篇
  2005年   110篇
  2004年   96篇
  2003年   91篇
  2002年   85篇
  2001年   52篇
  2000年   38篇
  1999年   47篇
  1998年   31篇
  1997年   27篇
  1996年   26篇
  1995年   34篇
  1994年   29篇
  1993年   22篇
  1992年   26篇
  1991年   48篇
  1990年   28篇
  1989年   33篇
  1988年   25篇
  1987年   14篇
  1986年   28篇
  1985年   20篇
  1984年   21篇
  1983年   20篇
  1982年   21篇
  1980年   10篇
  1979年   24篇
  1978年   27篇
  1977年   16篇
  1976年   12篇
  1975年   13篇
  1973年   11篇
  1971年   12篇
  1965年   8篇
排序方式: 共有2181条查询结果,搜索用时 0 毫秒
991.
Nerve growth factor (NGF), a member of the neurotrophin family, is an all-beta-sheet protein with a characteristic structure motif, the cystine knot. Unfolding of NGF in 6 M GdnHCl has been described previously to involve an initial partial loss of structure and a subsequent very slow conversion to a second, completely unfolded state. This latter conversion was postulated to represent a back-threading of the disulfide bond that passes through the cystine knot (loop threading hypothesis). Here, this hypothesis was questioned with the pro form of the protein (proNGF). In proNGF, the mature part is preceded by the 103-amino acid pro-peptide. Consequently, loop threading of the N-terminally extended protein should be significantly delayed. However, unfolding kinetics of proNGF monitored by RP-HPLC, intrinsic fluorescence, and NMR spectroscopy were comparable to those of mature NGF. Time-resolved (1)H-(15)N HSQC spectra revealed a slow time-dependent loss of residual structure of which the kinetics correlated well with the transition observed by RP-HPLC. Refolding from the completely unfolded state led to a partial recovery of natively folded proNGF. In summary, the sequential unfolding of proNGF only marginally differed from that of mature NGF. Therefore, it is very unlikely that a loop threading mechanism is the cause of the slow unfolding step.  相似文献   
992.
Cyanoalanine hydratase (E.C. 4.2.1.65) is an enzyme involved in the cyanide detoxification pathway of higher plants and catalyzes the hydrolysis of β-cyano-l-alanine to asparagine. We have isolated the enzyme from seedlings of blue lupine (Lupinus angustifolius) to obtain protein sequence information for molecular cloning. In contrast to earlier reports, extracts of blue lupine cotyledons were found also to contain cyanoalanine-nitrilase (E.C. 3.5.5.4) activity, resulting in aspartic acid production. Both activities co-elute during isolation of cyanoalanine hydratase and are co-precipitated by an antibody directed against Arabidopsis thaliana nitrilase 4 (NIT4). The isolated cyanoalanine hydratase was sequenced by nanospray-MS/MS and shown to be a homolog of Arabidopsis thaliana and Nicotiana tabacum NIT4. Full-length cDNA sequences for two NIT4 homologs from blue lupine were obtained by PCR using degenerate primers and RACE-experiments. The recombinant LaNIT4 enzymes, like Arabidopsis NIT4, hydrolyze cyanoalanine to asparagine and aspartic acid but show a much higher cyanoalanine-hydratase activity. The two nitrilase genes displayed differential but overlapping expression. Taken together these data show that the so-called ‘cyanoalanine hydratase’ of plants is not a bacterial type nitrile hydratase enzyme but a nitrilase enzyme which can have a remarkably high nitrile-hydratase activity.  相似文献   
993.
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.  相似文献   
994.
The sympathetic-catecholamine system is involved in the regulation of hepatic metabolic pathways mainly through cAMP-linked β2-adrenoceptors (β2-ARs) in humans and to a lesser extent through cAMP-independent mechanisms, but no information is available about the possible biochemical changes of β2-ARs and their signalling pathways in human colorectal cancer (CRC) and colorectal cancer hepatic metastases (CRCHM). Changes in density and distribution of β-ARs as well as in post-receptor signalling components were studied in membranes of human liver with CRCHM, and for comparison, in membranes of nonadjacent, non-metastatic human liver (NA-NM) obtained from 13 patients, using binding and competition binding studies. Studies were also carried out using normal and cancerous human colon tissues. In CRCHM, the density of β-ARs (Bmax) was significantly reduced, compared to NA-NM liver tissues (40.09 ± 2.83 vs. 23.09 ± 3.24 fmol/mg protein; P < 0.001). A similar decrease in the β-AR density was observed in the colon with primary colorectal cancer compared to healthy colon (37.6 ± 2.2 vs. 23.8 ± 3.5 fmol/mg protein), whereas the affinity of ICYP binding to the receptor remained unaffected. Desensitized β-ARs were uncoupled from stimulatory G-protein (GS), as total density of β-adrenoceptors in the high affinity state was significantly reduced. Concomitantly, CRCHM elicited decrease in the catalytic adenylate cyclase (AC) activity (cAMP formation) in response to isoproterenol plus GTP or forskolin or NaF. In NA-NM and CRCHM liver, the inhibition–concentration curves of ICI 118.551 showed the presence of a homogeneous population of the β2-AR subtypes. Neither the binding patterns nor the inhibition constant (Ki) of ICI 118.551 were altered in CRCHM. In CRCHM, the hepatic β-AR-G-protein(s)-AC signalling system was markedly impaired, thus, these changes may well influence β-AR-mediated functions in both organs.  相似文献   
995.
Anilinoalkynylpyrimidines were prepared and evaluated as dual EGFR/ErbB2 kinase inhibitors. A preference was found for substituted phenyl and heteroaromatic rings attached to the alkyne. In addition, the presence of a potential hydrogen bond donor appended to this ring was favored. Selected molecules in the series demonstrated some activity against human tumor cell lines.  相似文献   
996.
CD4+CD25+FOXP3+ T regulatory cells (Tregs) are pivotal for the induction and maintenance of peripheral tolerance in both mice and humans. Rapamycin has been shown to promote tolerance in experimental models and to favor CD4+CD25+ Treg-dependent suppression. We recently reported that rapamycin allows in vitro expansion of murine CD4+CD25+FoxP3+ Tregs, which preserve their suppressive function. In the current study, we show that activation of human CD4+ T cells from healthy subjects in the presence of rapamycin leads to growth of CD4+CD25+FOXP3+ Tregs and to selective depletion of CD4+CD25- T effector cells, which are highly sensitive to the antiproliferative effect of the compound. The rapamycin-expanded Tregs suppress proliferation of both syngeneic and allogeneic CD4+ and CD8+ T cells. Interestingly, rapamycin promotes expansion of functional CD4+CD25+FOXP3+ Tregs also in type 1 diabetic patients, in whom a defect in freshly isolated CD4+CD25+ Tregs has been reported. The capacity of rapamycin to allow growth of functional CD4+CD25+FOXP3+ Tregs, but also to deplete T effector cells, can be exploited for the design of novel and safe in vitro protocols for cellular immunotherapy in T cell-mediated diseases.  相似文献   
997.
Genital morphology is informative phylogenetically and strongly selected sexually. We use a recent species-level phylogeny of nephilid spiders to synthesize phylogenetic patterns in nephilid genital evolution that document generalized conflict between male and female interests. Specifically, we test the intersexual coevolution hypothesis by defining gender-specific indices of genital complexity that summarize all relevant and phylogenetically informative traits. We then use independent contrasts to show that male and female genital complexity indices correlate significantly and positively across the phylogeny rather than among sympatric sister species, as predicted by reproductive character displacement. In effect, as females respond to selection for fecundity-driven fitness via giantism and polyandry (perhaps responding to male-biased effective sex ratios), male mechanisms evolve to monopolize females (male monogamy) via opportunistic mating, pre- and postcopulatory mate guarding, and/or plugging of female genitalia to exclude subsequent suitors. In males morphological symptoms of these phenomena range from self-mutilated genitalia to total castration. Although the results are compatible with both recently favored sexual selection hypotheses, sexually antagonistic coevolution, and cryptic female choice, the evidence of strong intersexual conflict and genitalic damage in both sexes is more easily explained as sexually antagonistic coevolution due to an evolutionary arms race.  相似文献   
998.
Fatty acid synthase (FASN or FAS, EC 2.3.1.85) is the sole mammalian enzyme to synthesize fatty acids de novo from acetyl- and malonyl-coenzyme A (CoA) esters. This article describes a new method that directly quantifies uniformly labeled (13)C(16)-labeled palmitate ([(13)C(16)]palmitate) by tracing [(13)C(2)]acetyl-CoA and [(13)C(3)]malonyl-CoA using an in vitro FASN assay. This method used gas chromatography-mass spectrometry (GC-MS) to detect [(13)C(16)]palmitate carboxylate anions (m/z 271) of pentafluorobenzyl (PFB) derivatives and was highly sensitive at femtomole quantities. Uniformly incorporated [(13)C(16)]palmitate was the primary product of both recombinant and crude tissue lysate FASN. Quantification of FASN protein within crude tissue lysates ensured equal FASN amounts, preserved steady-state kinetics, and enabled calculation of FASN-specific activity. FASN activity determined by [(13)C(16)]palmitate synthesis was consistent with values obtained from β-nicotinamide adenine dinucleotide 2'-phosphate (NADPH) oxidation assays. Analysis of FASN activity from tissue extracts was not hampered by contaminating enzymes or preexisting fatty acids. Crude mammary gland and liver lysates had significantly different activities at 82 and 65nmolmin(-1)mg(-1), respectively, suggesting that tissue-specific activity levels differ in a manner unrelated to FASN amount. GC-MS quantification of [(13)C(16)]palmitate synthesis permits sensitive evaluation of FASN activity from tissues of varied physiological states and of purified FASN activity in the presence of modifying proteins, enzymes, or drugs.  相似文献   
999.
1000.

Background

The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer''s disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities.

Methodology/Principal Findings

Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies.

Conclusions/Significance

Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号