首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   925篇
  免费   67篇
  国内免费   1篇
  2023年   3篇
  2022年   2篇
  2021年   9篇
  2020年   9篇
  2019年   9篇
  2018年   15篇
  2017年   9篇
  2016年   29篇
  2015年   33篇
  2014年   32篇
  2013年   33篇
  2012年   74篇
  2011年   59篇
  2010年   36篇
  2009年   38篇
  2008年   49篇
  2007年   55篇
  2006年   58篇
  2005年   60篇
  2004年   49篇
  2003年   53篇
  2002年   39篇
  2001年   18篇
  2000年   12篇
  1999年   19篇
  1998年   15篇
  1997年   17篇
  1996年   18篇
  1995年   20篇
  1994年   17篇
  1993年   12篇
  1992年   5篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   9篇
  1987年   2篇
  1986年   9篇
  1985年   2篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   4篇
  1975年   2篇
  1971年   3篇
  1965年   3篇
  1963年   1篇
  1930年   1篇
排序方式: 共有993条查询结果,搜索用时 15 毫秒
101.
102.
The transport of nucleotide sugars from the cytoplasm into the Golgi apparatus is mediated by specialized type III proteins, the nucleotide sugar transporters (NSTs). Transport assays carried out in vitro with Golgi vesicles from mammalian cells showed specific uptake for a total of eight nucleotide sugars. When this study was started, NSTs with transport activities for all but two nucleotide sugars (UDP-Xyl and UDP-Glc) had been cloned. Aiming at identifying these elusive NSTs, bioinformatic methods were used to display putative NST sequences in the human genome. Ten open reading frames were identified, cloned, and heterologously expressed in yeast. Transport capabilities for UDP-Glc and UDP-Xyl were determined with Golgi vesicles isolated from transformed cells. Although a potential UDP-Glc transporter could not be identified due to the high endogenous transport background, the measurement of UDP-Xyl transport was possible on a zero background. Vesicles from yeast cells expressing the human gene SLC35B4 showed specific uptake of UDP-Xyl, and subsequent testing of other nucleotide sugars revealed a second activity for UDP-GlcNAc. Expression of the epitope-tagged SLC35B4 in mammalian cells demonstrated strict Golgi localization. Because decarboxylation of UDP-GlcA is known to produce UDP-Xyl directly in the endoplasmic reticulum and Golgi lumen, our data demonstrate that two ways exist to deliver UDP-Xyl to the Golgi apparatus.  相似文献   
103.
A highly reproducible regeneration system through somatic embryogenesis from the excised mature embryos (MEs) of dry seeds of a range of European barley cultivars was developed. By minimizing the germination of plated MEs, primary callus could be obtained with high frequency which permitted efficient embryogenesis and regeneration of a large number of green plants. Different approaches were tested to reduce or prevent normal germination: (i) the use of a well defined balance of maltose and 2,4-D in the induction medium, (ii) soaking of seeds in water containing 2,4-D solution, (iii) direct culture of excised embryonic axes, (iv) longitudinally bisected MEs giving two halves, and (v) complete removal of the elongated main shoot including any roots within a week of culture initiation. Culturing of bisected MEs and whole embryonic axes gave the best responses with respect to large amounts of callus combined with minimal germination. The incorporation of BAP at low levels in the medium was found to be most effective for embryogenesis and the maintenance of long-term morphogenic capacity (more than 11 months up to now). This procedure allows the complete regeneration of plants in 16-20 weeks, from the initial isolation of MEs through all the steps to the development of plants ready to be transferred to the soil. The protocol was first developed for cv. Golden Promise and successfully applied to commercial cultivars. All cultivars tested formed embryogenic callus, with overall rates ranging from 22-55% and an average number of green plants per embryogenic callus from 1.5 to 7.5 across the genotypes.  相似文献   
104.
Human epidermis marks the interface between internal and external environments with the major task being to maintain body hydration. Alternating exposure of skin to a dry or humid environment is likely to cause changes in the epidermal water gradient resulting in osmotic alterations of epidermal keratinocytes. The present in vitro approach studied the effect of hypotonicity on cell-cell contact. It was demonstrated that hypotonic stress applied to human epithelial cells (HaCaT, A-431) induced upregulation of E-cadherin at both, the protein and mRNA level. 5'-deletional mutants of the E-cadherin promoter identified an element ranging from -53 to +31 that conveyed strong transactivation under hypotonic stress. In order to define relevant upstream regulators members of the MAP kinase family, the epidermal growth factor receptor (EGFR) and protein kinase B/Akt (PKB/Akt) were investigated. Hypotonic conditions led to a fast activation of ERK1/2, SAPK/JNK, p38, EGFR and PKB/Akt with distinct activation patterns. Experiments using specific inhibitors showed that p38 contributes to the E-cadherin transactivation under hypotonic conditions. Further upstream, adhesion was found to be a prerequisite for E-cadherin transactivation in this model. In summary, the present study provides evidence that E-cadherin is an osmo-sensitive gene that responds to hypotonic stress. The function of this regulation may be found in morphological changes induced by cell swelling. It is likely that induction of E-cadherin contributes to the stabilization between adjacent cells in order to withstand the physical forces induced by hypotonicity.  相似文献   
105.
The 23S rRNA methyltransferase RrmJ (FtsJ) is responsible for the 2'-O methylation of the universally conserved U2552 in the A loop of 23S rRNA. This 23S rRNA modification appears to be critical for ribosome stability, because the absence of functional RrmJ causes the cellular accumulation of the individual ribosomal subunits at the expense of the functional 70S ribosomes. To gain insight into the mechanism of substrate recognition for RrmJ, we performed extensive site-directed mutagenesis of the residues conserved in RrmJ and characterized the mutant proteins both in vivo and in vitro. We identified a positively charged, highly conserved ridge in RrmJ that appears to play a significant role in 23S rRNA binding and methylation. We provide a structural model of how the A loop of the 23S rRNA binds to RrmJ. Based on these modeling studies and the structure of the 50S ribosome, we propose a two-step model where the A loop undocks from the tightly packed 50S ribosomal subunit, allowing RrmJ to gain access to the substrate nucleotide U2552, and where U2552 undergoes base flipping, allowing the enzyme to methylate the 2'-O position of the ribose.  相似文献   
106.
All members of the sulphotransferase (SOT, EC 2.8.2.-) protein family use 3'-phosphoadenosine 5'-phosphosulphate (PAPS) as the sulphuryl donor and transfer the sulphonate group to an appropriate hydroxyl group of several classes of substrates. These enzymes have highly conserved domains and can be found in eubacteria and eukaryotes. In mammals, sulphate conjugation catalysed by SOTs constitutes an important reaction in the transformation of xenobiotics, and in the modulation of the biological activity of steroid hormones and neurotransmitters. In plants, sulphate-conjugation reactions seem to play an important role in plant growth, development, and adaptation to stress. To date only a few plant SOTs have been characterized in detail. The flavonol 3- and 4'-SOTs from Flaveria species (Asteraceae), which catalyse the sulphonation of flavonol aglycones and flavonol 3-sulphates, respectively, were the first plant SOTs for which cDNA clones were isolated. The plasma membrane associated gallic acid SOT of Mimosa pudica L. pulvini cells may be intrinsic to signalling events that modify the seismonastic response. In Brassica napus L. a SOT catalyses the O-sulphonation of brassinosteroids and thereby abolishes specifically the biological activity of 24-epibrassinolide. The fully sequenced genome of Arabidopsis thaliana Heynh. contains in total 18 genes that are likely to encode SOT proteins based on sequence similarities of the translated products with an average identity of 51.1%. So far only one SOT from A. thaliana (At5g07000) was functionally characterized: the protein was shown to catalyse the sulphonation of 12-hydroxyjasmonate and thereby inactivate excess jasmonic acid in plants. The substrates and, therefore, the physiological roles of SOTs are very diverse. By using the numerous informative databases and methods available for the model plant A. thaliana, the elucidation of the functional role of the SOT protein family will be accelerated.  相似文献   
107.
The carcinogenic potential of xenobiotics and possible confounders are often difficult to differentiate in in vivo studies. In contrast, in vitro studies allow investigation of the impact of carcinogens on human target cells under standardized conditions. The aim of the present study is to demonstrate whether three-dimensional mini organ-cultures (MOCs) of human inferior nasal turbinate epithelia may represent a useful model to study genotoxic effects of xenobiotics in vitro. Culture of mini organs was performed by cutting 1mm3 pieces from fresh specimens of inferior nasal turbinates. After a period of 5-6 days the specimens were fully covered with epithelium. On days 7, 9, and 11 of culture, intact MOCs from 25 tissue donors were incubated with dimethyl sulfoxide (DMSO) as a negative control, or with mono(2-ethylhexyl) phthalate (MEHP), benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). On days 7 and 11, MOCs were analyzed by the alkaline Comet assay to detect DNA-single-strand breaks, alkali-labile sites and incomplete excision-repair sites. DNA migration after single exposure of non-cultivated fresh specimens was also analyzed. In order to detect regimen-specific effects, DNA fragmentation after single exposure of intact MOCs was compared with that of cells after separation of MOCs on day 7 of culture and consecutive exposure of individual cells. Significant DNA migration as a measure of DNA single-strand breaks, alkali-labile sites and incomplete excision repair sites, was found after electrophoresis due to single and triple exposure of MOCs to MEHP, BPDE and MNNG. Triple exposure of MOCs compared to single exposure revealed no difference after exposure to DMSO or MEHP, and an increased migration after exposure to BPDE and MNNG. When single exposure of isolated cells from fresh specimens was compared with that of intact MOCs, DMSO and MNNG had no significantly different effect, whereas exposure to MEHP or BPDE caused a reduced migration in cells from MOCs. When exposure of isolated cells harvested from MOCs was compared with exposure of intact MOCs, MEHP and BPDE caused a significantly lower DNA migration in intact MOCs. MOCs provide an in vitro model suitable for the assessment of genotoxic effects of environmental pollutants both after single or repetitive exposure. Due to the intact structure of the exposed mucosa this model may be a helpful tool in mimicking the in vivo situation in ecogenotoxicology studies.  相似文献   
108.
We searched for linkage disequilibrium (LD) in 137 triads with dyslexia, using markers that span the most-replicated dyslexia susceptibility region on 6p21-p22, and found association between the disease and markers within the VMP/DCDC2/KAAG1 locus. Detailed refinement of the LD region, involving sequencing and genotyping of additional markers, showed significant association within DCDC2 in single-marker and haplotype analyses. The association appeared to be strongest in severely affected patients. In a second step, the study was extended to include an independent sample of 239 triads with dyslexia, in which the association--in particular, with the severe phenotype of dyslexia--was confirmed. Our expression data showed that DCDC2, which contains a doublecortin homology domain that is possibly involved in cortical neuron migration, is expressed in the fetal and adult CNS, which--together with the hypothesized protein function--is in accordance with findings in dyslexic patients with abnormal neuronal migration and maturation.  相似文献   
109.
Autosomal recessive hereditary motor and sensory neuropathy (HMSN) or Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous disorder of the peripheral nervous system. The clinical picture includes progressive distal weakness and atrophy, foot deformities, and distal sensory loss. For autosomal recessive CMT type 4B2 one locus was mapped to chromosome 11p15. Recently, mutations in SET binding factor 2 (SBF2), were identified as cause of CMT4B2. SBF2 is a member of the pseudo-phosphatase branch of myotubularins and all disease-associated mutations known to date lead to shortened or truncated proteins, also implicating loss-of-function. Here, we describe the molecular cloning and the expression pattern of Sbf2. The mRNA spans around 8 kb, and the protein shares high amino acid identity compared to the human protein suggesting a conserved function. Sbf2 is encoded by 40 exons on murine chromosome 7. In situ hybridization, Northern blots and RT-analysis revealed a very broad pattern of Sbf2 expression. Overexpressed epitope tagged Sbf2 showed cytoplasmic distribution. Taken together, this study provides information about the mRNA expression and subcellular localization of Sbf2 and as such helps in further understanding its function in development and disease.  相似文献   
110.
The lipoglycodepsipeptide antibiotic ramoplanin is proposed to inhibit bacterial cell wall biosynthesis by binding to intermediates along the pathway to mature peptidoglycan, which interferes with further enzymatic processing. Two sequential enzymatic steps can be blocked by ramoplanin, but there is no definitive information about whether one step is inhibited preferentially. Here we use inhibition kinetics and binding assays to assess whether ramoplanin and the related compound enduracidin have an intrinsic preference for one step over the other. Both ramoplanin and enduracidin preferentially inhibit the transglycosylation step of peptidoglycan biosynthesis compared with the MurG step. The basis for stronger inhibition is a greater affinity for the transglycosylase substrate Lipid II over the MurG substrate Lipid I. These results provide compelling evidence that ramoplanin's and enduracidin's primary cellular target is the transglycosylation step of peptidoglycan biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号