首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   31篇
  国内免费   1篇
  677篇
  2023年   5篇
  2022年   19篇
  2021年   24篇
  2020年   15篇
  2019年   15篇
  2018年   24篇
  2017年   24篇
  2016年   32篇
  2015年   39篇
  2014年   48篇
  2013年   55篇
  2012年   76篇
  2011年   70篇
  2010年   29篇
  2009年   29篇
  2008年   34篇
  2007年   26篇
  2006年   36篇
  2005年   16篇
  2004年   18篇
  2003年   17篇
  2002年   12篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1978年   1篇
  1968年   1篇
排序方式: 共有677条查询结果,搜索用时 0 毫秒
661.
Pennogenyl saponins are the active compounds of large number of plant species and consequently many polyherbal formulations. Hence, great interest has been shown in their characterization and in the investigation of their pharmacological and biological properties, especially anticancer. This present study reports on the evaluation of cytotoxic effects and explanation of the molecular mechanisms of action of the two pennogenyl saponins (PS 1 and PS 2) isolated from Paris quadrifolia L. rhizomes on human cervical adenocarcinoma cell line HeLa. To determine the viability of the cells treated with the compounds we used real-time cell proliferation analysis and found that the pennogenyl saponins PS 1 and PS 2 strongly inhibited the tumor cells growth with IC50 values of 1.11 ± 0.04 μg/ml and 0.87 ± 0.05 μg/ml, respectively. The flow cytometry analysis indicated that the two compounds induced apoptosis in a dose-dependent manner and decreased mitochondrial membrane potential in HeLa cells in the early stage of apoptosis. Quantitative PCR and Western Blot analysis showed that the two saponins significantly increased mRNA expression of FADD and BID as well as induced caspase-8 via increased of procaspase-8 processing in the treated cells. The results of this study suggest that both the extrinsic death receptor and intrinsic mitochondrial pathways are involved in the programmed cell death.  相似文献   
662.

Objective

The optimal vitamin D intake for nursing women is controversial. Deterioration, at least in bone mass, is reported during lactation. This study evaluated whether vitamin D supplementation during lactation enhances the maternal and infant’s vitamin D status, bone mass and body composition.

Design and Methods

After term delivery, 174 healthy mothers were randomized to receive 1200 IU/d (800 IU/d+400 IU/d from multivitamins) or 400 IU/d (placebo+400 IU/d from multivitamins) of cholecalciferol for 6 months while breastfeeding. All infants received 400 IU/d of cholecalciferol. Serum 25-hydroxyvitamin D [25(OH)D], iPTH, calcium, urinary calcium, and densitometry were performed in mother-offspring pairs after delivery, and at 3 and 6 months later.

Results

A total of 137 (79%) (n = 70; 1200 IU/d, n = 67; 400 IU/d) completed the study. 25(OH)D was similar in both groups at baseline (13.7 ng/ml vs. 16.1 ng/ml; P = 0.09) and at 3 months (25.7 ng/ml vs. 24.5 ng/ml; P = 0.09), but appeared higher in the 1200 IU/d group at 6 months of supplementation (25.6 ng/ml vs. 23.1 ng/ml; P = 0.009). The prevalence of 25(OH)D <20 ng/ml was comparable between groups at baseline (71% vs. 64%, P = 0.36) but lower in the 1200 IU/d group after 3 months (9% vs. 25%, P = 0.009) and 6 months (14% vs. 30%, P = 0.03). Maternal and infants’ iPTH, calciuria, bone mass and body composition as well as infants’ 25(OH)D levels were not significantly different between groups during the study. Significant negative correlations were noted between maternal 25(OH)D and fat mass (R = −0.49, P = 0.00001), android fat mass (R = −0.53, P = 0.00001), and gynoid fat mass (R = −0.43, P = 0.00001) after 6 months of supplementation.

Conclusions

Vitamin D supplementation at a dose of 400 IU/d was not sufficient to maintain 25(OH)D >20 ng/ml in nursing women, while 1200 IU/d appeared more effective, but had no effect on breastfed offspring vitamin D status, or changes in the bone mass and the body composition observed in both during breastfeeding.

Trial Registration

ClinicalTrials.gov NCT01506557  相似文献   
663.
664.
The thionucleoside 2-thiocytidine (C2S) occurs in nature in transfer RNAs; it receives attention in diverse fields like drug research and nanotechnology. By potentiometric pH titrations we measured the acidity constants of H(C2S)(+) and the stability constants of the M(C2S)(2+) and M(C2S-H)(+) complexes (M(2+) = Zn(2+), Cd(2+)), and we compared these results with those obtained previously for its parent nucleoside, cytidine (Cyd). Replacement of the (C2)=O unit by (C2)=S facilitates the release of the proton from (N3)H(+) in H(C2S)(+) (pK (a) = 3.44) somewhat, compared with H(Cyd)(+) (pK (a) = 4.24). This moderate effect of about 0.8 pK units contrasts with the strong acidification of about 4 pK units of the (C4)NH(2) group in C2S (pK (a) = 12.65) compared with Cyd (pK (a) approximately 16.7); the reason for this result is that the amino-thione tautomer, which dominates for the neutral C2S molecule, is transformed upon deprotonation into the imino-thioate form with the negative charge largely located on the sulfur. In the M(C2S)(2+) complexes the (C2)S group is the primary binding site rather than N3 as is the case in the M(Cyd)(2+) complexes, though owing to chelate formation N3 is to some extent still involved in metal ion binding. Similarly, in the Zn(C2S-H)(+) and Cd(C2S-H)(+) complexes the main metal ion binding site is the (C2)S(-) unit (formation degree above 99.99% compared with that of N3). However, again a large degree of chelate formation with N3 must be surmised for the M(C2S-H)(+) species in accord with previous solid-state studies of related ligands. Upon metal ion binding, the deprotonation of the (C4)NH(2) group (pK (a) = 12.65) is dramatically acidified (pK (a) approximately 3), confirming the very high stability of the M(C2S-H)(+) complexes. To conclude, the hydrogen-bonding and metal ion complex forming capabilities of C2S differ strongly from those of its parent Cyd; this must have consequences for the properties of those RNAs which contain this thionucleoside.  相似文献   
665.
666.
667.
  1. Climate change has the potential to shape the future of infectious diseases, both directly and indirectly. In aquatic systems, for example, elevated temperatures can modulate the infectivity of waterborne parasites and affect the immune response of zooplanktonic hosts. Moreover, lake warming causes shifts in the communities of primary producers towards cyanobacterial dominance, thus lowering the quality of zooplankton diet. This may further affect host fitness, resulting in suboptimal resources available for parasite growth.
  2. Previous experimental studies have demonstrated the respective effects of temperature and host diet on infection outcomes, using the zooplankter Daphnia and its microparasites as model systems. Although cyanobacteria blooms and heat waves are concurrent events in nature, few attempts have been made to combine both stressors in experimental settings.
  3. Here, we raised the zooplankter Daphnia (two genotypes) under a full factorial design with varying levels of temperature (the standard 19°C and elevated 23°C), food quality (Scenedesmus obliquus as high-quality green algae, Microcystis aeruginosa and Planktothrix agardhii as low-quality cyanobacteria) and exposed them to the parasitic yeast Metschnikowia bicuspidata. We recorded life history parameters of the host as well as parasite traits related to transmission.
  4. The combination of low-quality cyanobacterial diets and elevated temperature resulted in additive detrimental effects on host fecundity. Low-quality diets reduced parasite output, while temperature effects were context dependent. Overall, we argue that the combined effects of elevated water temperature and poor-quality diets may decrease epidemics of a common fungal parasite under a climate change scenario.
  相似文献   
668.
Epigenetic regulation plays essential role in cell differentiation and dedifferentiation, which are the intrinsic processes involved in regeneration. To investigate the epigenetic basis of regeneration capacity, we choose DNA methylation as one of the most important epigenetic mechanisms and the MRL/MpJ mouse as a model of mammalian regeneration known to exhibit enhanced regeneration response in different organs. We report the comparative analysis of genomic DNA methylation profiles of the MRL/MpJ and the control C57BL/6J mouse. Methylated DNA immunoprecipitation followed by microarray analysis using the Nimblegen ‘3 × 720 K CpG Island Plus RefSeq Promoter’ platform was applied in order to carry out genome-wide DNA methylation profiling covering 20 404 promoter regions. We identified hundreds of hypo- and hypermethylated genes and CpG islands in the heart, liver, and spleen, and 37 of them in the three tissues. Decreased inter-tissue diversification and the shift of DNA methylation balance upstream the genes distinguish the genomic methylation patterns of the MRL/MpJ mouse from the C57BL/6J. Homeobox genes and a number of other genes involved in embryonic morphogenesis are significantly overrepresented among the genes hypomethylated in the MRL/MpJ mouse. These findings indicate that epigenetic patterning might be a likely molecular basis of regeneration capability in the MRL/MpJ mouse.  相似文献   
669.
The Red Queen coevolutionary hypothesis predicts that parasites drive oscillations in host genotype frequencies due to frequency-dependent selection where common hosts are at disadvantage. However, examples of this phenomenon in natural populations are scarce. To examine if the Red Queen theory operates in the wild, we studied the genetic structure of populations of the crustacean waterflea ( Daphnia ), in relation to their infection levels, for which we collected multiple samples from a variety of lakes. The most common clone in a given population was often underinfected. This advantage, however, did not remain stable over time. Instead, the most common clone decreased in frequency over subsequent generations, indicating that parasites can track common clones. Such decreases were not observed in uninfected populations. Moreover, host clonal evenness was higher across the set of infected lakes compared to uninfected lakes; suggesting that any common clone is selected against when parasites are present. These results strongly suggest that Red Queen dynamics do operate in the wild.  相似文献   
670.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号