首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5204篇
  免费   479篇
  国内免费   3篇
  2023年   41篇
  2022年   91篇
  2021年   171篇
  2020年   101篇
  2019年   141篇
  2018年   161篇
  2017年   105篇
  2016年   215篇
  2015年   327篇
  2014年   349篇
  2013年   365篇
  2012年   464篇
  2011年   475篇
  2010年   258篇
  2009年   223篇
  2008年   297篇
  2007年   308篇
  2006年   231篇
  2005年   222篇
  2004年   188篇
  2003年   135篇
  2002年   147篇
  2001年   44篇
  2000年   39篇
  1999年   53篇
  1998年   24篇
  1997年   21篇
  1996年   17篇
  1995年   22篇
  1994年   20篇
  1993年   16篇
  1992年   24篇
  1991年   17篇
  1990年   23篇
  1989年   38篇
  1988年   16篇
  1987年   13篇
  1986年   16篇
  1985年   20篇
  1984年   18篇
  1983年   14篇
  1982年   10篇
  1980年   15篇
  1978年   9篇
  1976年   13篇
  1975年   8篇
  1972年   10篇
  1971年   9篇
  1969年   10篇
  1961年   7篇
排序方式: 共有5686条查询结果,搜索用时 46 毫秒
971.
972.
Pandemic influenza has posed an increasing threat to public health worldwide in the last decade. In the 20th century, three human pandemic influenza outbreaks occurred in 1918, 1957 and 1968, causing significant mortality. A number of hypotheses have been proposed for the emergence and development of pandemic viruses, including direct introduction into humans from an avian origin and reassortment between avian and previously circulating human viruses, either directly in humans or via an intermediate mammalian host. However, the evolutionary history of the pandemic viruses has been controversial, largely due to the lack of background genetic information and rigorous phylogenetic analyses. The pandemic that emerged in early April 2009 in North America provides a unique opportunity to investigate its emergence and development both in human and animal aspects. Recent genetic analyses of data accumulated through long-term influenza surveillance provided insights into the emergence of this novel pandemic virus. In this review, we summarise the recent literature that describes the evolutionary pathway of the pandemic viruses. We also discuss the implications of these findings on the early detection and control of future pandemics.  相似文献   
973.
974.
Apex predators are known to exert strong ecological effects, either through direct or indirect predator–prey interactions. Indirect interactions have the potential to influence ecological communities more than direct interactions as the effects are propagated throughout the population as opposed to only one individual. Indirect effects of apex predators are well documented in terrestrial environments, however there is a paucity of information for marine environments. Furthermore, manipulative studies, as opposed to correlative observations, isolating apex predator effects are lacking. Coral reefs are one of the most diverse ecosystems, providing a useful model system for investigating the ecological role of apex predators and their influence on lower trophic levels. Using predator models and transplanted macroalgae we examined the indirect effects of predators on herbivore foraging behaviour. We show that the presence of a model reef shark or large coral‐grouper led to a substantial reduction in bite rate and species richness of herbivorous fishes and an almost absolute localized cessation of macroagal removal, due to the perceived risk of predation. A smaller‐sized coral‐grouper also reduced herbivore diversity and activity but to a lesser degree than the larger model predators. These indirect effects of apex predators on the foraging behaviour of herbivores may have flow‐on effects on the biomass and distribution of macroalgae, and the functioning of coral reef ecosystems. This highlights that the ecological interactions and processes that contribute to ecosystem resilience may be more complex than previously assumed.  相似文献   
975.
The delivery of proteins instead of DNA into plant cells allows for a transient presence of the protein or enzyme that can be useful for biochemical analysis or genome modifications. This may be of particular interest for genome editing, because it can avoid DNA (transgene) integration into the genome and generate precisely modified “nontransgenic” plants. In this work, we explore direct protein delivery to plant cells using mesoporous silica nanoparticles (MSNs) as carriers to deliver Cre recombinase protein into maize (Zea mays) cells. Cre protein was loaded inside the pores of gold-plated MSNs, and these particles were delivered by the biolistic method to plant cells harboring loxP sites flanking a selection gene and a reporter gene. Cre protein was released inside the cell, leading to recombination of the loxP sites and elimination of both genes. Visual selection was used to select recombination events from which fertile plants were regenerated. Up to 20% of bombarded embryos produced calli with the recombined loxP sites under our experimental conditions. This direct and reproducible technology offers an alternative for DNA-free genome-editing technologies in which MSNs can be tailored to accommodate the desired enzyme and to reach the desired tissue through the biolistic method.Introducing DNA-modifying enzymes rather than DNA-based expression cassettes is an attractive alternative for genetic engineering and genome-editing applications such as gene targeting or site-specific recombination. It offers a transient presence of the enzymes, and the process can be coordinated with high levels of enzymatic activity at the time and sites of the desired DNA recombination events. Many DNA-metabolizing enzymes (endonucleases, transposases, and topoisomerases), when delivered in an unrestrained manner, show adverse effects on cell viability. Delivery in the form of protein or RNA may help to mitigate these effects (Cui et al., 2011; Sander et al., 2011; Watanabe et al., 2012). In addition, by introducing proteins, one can avoid the need to remove the protein-encoding DNA fragments from the engineered plant genome. This may help shorten the time from laboratory to field for future improved germplasms.Site-specific recombinases such as Cre or FLP have been widely used in genetic engineering applications (Sorrell and Kolb, 2005). The 38-kD Cre enzyme specifically binds to and recombines the 34-bp loxP sequences, allowing the removal, integration, or inversion of the DNA fragment flanked by these sequences (for review, see Wang et al., 2011). There are a number of established methodologies designed to provide the Cre recombinase activity for site-specific recombination in eukaryotic cells that do not involve the delivery of DNA. These methods include lipofection (Baubonis and Sauer, 1993), microinjection of protein or mRNA (de Wit et al., 1998; Luckow et al., 2009), electroporation of protein or mRNA (Kolb and Siddell, 1996; Ponsaerts et al., 2004), or using modified microorganisms for Cre delivery to their host cells (Vergunst et al., 2000; Koshy et al., 2010). Another strategy that has been used is the incubation or injection of tissues/cell cultures with cell-permeant Cre, a modified Cre protein fused to protein transduction domains or cell-penetrating peptides (Jo et al., 2001; Will et al., 2002; Lin et al., 2004; Nolden et al., 2006).For biotechnological applications in plant sciences, protein delivery systems have been developed, including microinjection (Wymer et al., 2001), protein immobilization to gold particles (Wu et al., 2011), and protein transduction through cell-penetrating peptides (for review, see Chugh et al., 2010). The cell-penetrating peptides were shown to enable intracellular delivery of the Cre recombinase protein to rice (Oryza sativa) callus tissues (Cao et al., 2006). Nanobiotechnology is offering an attractive alternative, since nanoparticles can be precisely tailored to deliver a particular biomolecule to the cell, tissue, or organism of interest when needed (for review, see Du et al., 2012). Mesoporous silica nanoparticles (MSNs) are particularly suited for this purpose. These porous nanoparticles are formed by a matrix of well-ordered pores that confers high loading capacity of molecules like proteins (for review, see Popat et al., 2011). Additionally, surfaces of MSNs can be readily modified, permitting the customization of nanoparticles to particular experimental needs (for review, see Trewyn et al., 2007). In our previous studies, it was shown that MSNs can be used for the codelivery of DNA and chemicals (Torney et al., 2007) as well as DNA and proteins (Martin-Ortigosa et al., 2012a) to plant cells via biolistics. To improve MSN performance as a projectile, gold plating of MSN surfaces was performed, increasing nanoparticle density and, subsequently, the ability to pass through the plant cell wall upon bombardment (Martin-Ortigosa et al., 2012b).In this work, the Cre recombinase enzyme was loaded into the pores of gold-plated MSNs and delivered through the biolistic method to maize (Zea mays) cells containing loxP sites integrated into chromosomal DNA (Lox-corn; Fig. 1A). Lox-corn expressed the glyphosate acetyltransferase gene (gat) and the Anemonia majano cyan fluorescent protein gene (AmCyan1) flanked by loxP sites. The MSN-released Cre enzyme recombined the loxP sites, thus removing the DNA fragment flanked by these sequences. Such excisions led to the expression of a variant of Discosoma sp. red fluorescent protein gene (DsRed2) and the loss of the selectable marker gene (Fig. 1A). Visual selection was used to recover the recombination events. Subsequently, fertile maize plants were regenerated from the recombined events and DNA analyses confirmed the recombination events. To our knowledge, this is the first time that MSNs have been used for the delivery of a functional recombinase into plant tissues, leading to successful genome editing.Open in a separate windowFigure 1.A, Schematic representation of the MSN-based bombardment technology. Cre protein is loaded into the pores of gold-plated MSN (Cre-6x-MSN) and subsequently bombarded onto immature embryos of a transgenic maize line carrying a loxP construct (Lox-corn). The parental transgenic Lox-corn tissues are blue fluorescence and herbicide resistant because they harbor a cassette with the glyphosate acetyltransferase (gat) selection gene and the AmCyan1 (cyan) marker gene flanked by the loxP sites. The DsRed2 (dsred) gene for the expression of a red fluorescent protein is placed downstream of the cassette. Once Cre recombinase is released inside the cell, it performs the recombination, excising gat-AmCyan1 genes and leading to the expression of the DsRed2 gene, switching the cell fluorescence pattern from blue to red. P, Promoter; T, terminator. UBINTRF, CYANF, and DSRED2R are primers for DNA analysis. B, Transmission electron microscope image showing the typical hexagonal shape and the well-ordered pore structure of a 6x-MSN. C, Scanning electron microscope image showing gold nanoparticle deposition (white dots) in all surfaces of 6x-MSN. D, Western blot showing Cre protein loading and release dynamics from 6x-MSN. The protein loading is almost immediate, even though some protein can be detected in the buffer even after 1 h of loading. For the release, some Cre protein can be observed after 24 h of incubation. Most of the protein remains in the 6x-MSN pellet. C+, 400 ng of Cre protein; Empty, a lane with no protein loading. The bands observed in the Empty lane were the spillover from the neighboring Pellet lane, which represents Cre-loaded 6x-MSN after the release experiment resuspended in Laemmli loading buffer (see “Materials and Methods”).  相似文献   
976.
Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.  相似文献   
977.
The water-soluble tetrazolium salt (WST-1) assay is frequently used to assess cell proliferation. However, our study showed that in normal and cancerous keratinocytes, this assay is more responsive to changes in oxygenation than to rates of cell growth. Stimulation of keratinocyte proliferation by low Ca2+ and suppression of proliferation by nocodazole resulted in modest changes in WST-1 readings, whereas gradually reducing the level of oxygen in the cellular environment from ambient (21%) to near anoxic (0.1%) revealed a very strong negative correlation between cell oxygenation and WST-1 reagent reduction. In contrast, the very similar MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell proliferation assay, which uses a different tetrazolium salt, showed no sensitivity to the level of oxygen. Unlike MTT, WST-1 reagent is reduced extracellularly through trans-plasma membrane transport (tPMET), thereby suggesting that tPMET is oxygen dependent. We propose that the WST-1 assay can be developed into a sensitive quantitative method to evaluate cell oxygenation in vitro and used to study the role of hypoxia and tPMET in homeostasis and disease (e.g., cancer). At the same time, WST-1 assay should be used cautiously to assess cell viability or proliferation because readings can be affected by certain extrinsic (low atmospheric oxygen or high density culture) or intrinsic (defects in oxygen-sensing pathways) factors.  相似文献   
978.
979.
Argonaute proteins are the core components of the RNA-induced silencing complex, the central effector of the mammalian RNA interference pathway. In the cytoplasm, they associate with at least two types of cytoplasmic RNA granules; processing bodies and stress granules, which function in mRNA degradation and translational repression, respectively. The significance of Argonaute association with these RNA granules is not entirely clear but it is likely related to their activities within the RNAi pathway. Understanding what regulates targeting of Argonautes to RNA granules may provide clues as to their functions at these organelles. To this end, there are a number of conflicting reports that describe the role of small RNAs in targeting Argonaute proteins in mammalian cells. We employed quantitative microscopic analyses of human Argonaute 2 (hAgo2) mutants to study factors that govern localization of this RNA-binding protein to cytoplasmic RNA granules. We report, for the first time, that hAgo2 is recruited to stress granules as a consequence of its interaction with miRNAs. Moreover, loading of small RNAs onto hAgo2 is not required for its stability, suggesting that a pool of unloaded hAgo2 may exist for extended periods of time in the cytoplasm.  相似文献   
980.
Cohen JD  Thompson S  Ting AY 《Biochemistry》2011,50(38):8221-8225
Mutation of a gatekeeper residue, tryptophan 37, in E. coli lipoic acid ligase (LplA), expands substrate specificity such that unnatural probes much larger than lipoic acid can be recognized. This approach, however, has not been successful for anionic substrates. An example is the blue fluorophore Pacific Blue, which is isosteric to 7-hydroxycoumarin and yet not recognized by the latter's ligase ((W37V)LplA) or any tryptophan 37 point mutant. Here we report the results of a structure-guided, two-residue screening matrix to discover an LplA double mutant, (E20G/W37T)LplA, that ligates Pacific Blue as efficiently as (W37V)LplA ligates 7-hydroxycoumarin. The utility of this Pacific Blue ligase for specific labeling of recombinant proteins inside living cells, on the cell surface, and inside acidic endosomes is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号